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ABSTRACT 

 

When travel is considered a demand derived from people’s need to perform activities, it 

becomes clear that a better understanding of how people organize their activities during a day 

must provide a more solid basis for travel demand modeling. By replicating disaggregate travel 

decisions (at the individual level), activity-based models may produce better travel demand 

predictions, compared to the previous generations of modeling approaches (trip-based 

approaches, for instance). A paper published in 2019 stands out among the most recent activity-

based modeling research as the authors propose a comprehensive framework for generating full 

and detailed activity schedules for given agents depending on their sociodemographic features, 

called Data-Driven Activity Scheduler (DDAS). 

The aim of this research was to develop a commented replication of the methodological 

approach of two modules of the DDAS: the Activity Type Model (ATM) and the Mode Choice 

Model (MCM). Specific objectives included replicating these two modules of the DDAS 

framework using data from the Federal District Urban Mobility Survey, which is significantly 

larger than the dataset used in the original DDAS study. Moreover, it was intended to 

investigate possible improvements to be made on the DDAS framework, including its validation 

procedure. 

The obtained results from the replication of the DDAS framework indicated that there was 

improvement to be made on the manner how models were being trained, in order to better deal 

with class imbalance. Therefore, a second implementation was made by using the SMOTE 

technique (Synthetic Minority Oversampling Technique) for training the ATM and MCM 

modules. Although activity chains seemed more realistic in this second set of results, the overall 

validation score for the ATM module was low. Therefore, a third model was developed by 

training the models as Random Forest classifiers instead of isolated Decision Tree classifiers 

as it was defined in the original DDAS framework. Significant improvement was observed in 

the results of this third model, both in training and test, for both ATM and MCM modules. 

Furthermore, another contribution of this study is the public availability of all scripts that were 

developed during its conduction. 
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RESUMO 

 

Considerando as viagens como demanda derivada da necessidade das pessoas de executar suas 

atividades, fica claro que um melhor entendimento de como as pessoas organizam essas 

atividades durante o dia leva a uma modelagem de demanda por transportes mais sólida. 

Replicando decisões desagregadas (individuais) de transporte, os modelos baseados em 

atividades podem produzir melhores previsões de demanda por viagens comparados às gerações 

anteriores de abordagens de modelagem (a modelagem baseada em viagens, por exemplo). Um 

artigo publicado em 2019 se destaca entre as produções científicas recentes relacionadas à 

modelagem baseada em atividades por propor um modelo composto para geração de diários 

detalhados de atividades para agentes, com base em suas características socioeconômicas, o 

Agendador de Atividades Baseado em Dados (Data-Driven Activity Scheduler – DDAS). 

O objetivo deste trabalho foi desenvolver uma replicação comentada da abordagem 

metodológica de dois módulos do DDAS: o Modelo de Tipo de Atividade (Activity Type Model 

– ATM) e o Modelo de Escolha Modal (Mode Choice Model – MCM). Objetivos específicos 

incluíam a replicação destes módulos do DDAS usando dados da Pesquisa de Mobilidade 

Urbana do Distrito Federal, que é significativamente maior que a base de dados utilizada no 

artigo original. Além disso, pretendia-se investigar possíveis melhorias a serem feitas aos 

modelos do DDAS ou ao seu método de validação. 

Os resultados obtidos indicaram que uma modificação no método de treino dos modelos poderia 

compensar o desbalanço de frequência entre as classes. Assim, foi desenvolvida uma segunda 

implementação usando a técnica de SMOTE (Synthetic Minority Oversampling Technique – 

Técnica de Sobreamostragem Sintética de Minoria) para treinar os módulos ATM e MCM. 

Apesar de terem sido obtidas cadeias de atividades mais realistas a partir dessa segunda 

implementação, o score de validação para o módulo ATM foi baixo. Dessa forma, uma terceira 

implementação foi desenvolvida, com os modelos treinados como classificadores Random 

Forest no lugar de classificadores de árvore de decisão isoladas. Foi observada melhoria 

significativa nos resultados desse terceiro modelo, tanto no treinamento quanto na validação, 

para ambos os módulos ATM e MCM. Além disso, outra contribuição desse trabalho foi a 

disponibilização pública de todos os códigos desenvolvidos durante sua condução.  
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1 INTRODUCTION 

1.1 BACKGROUND AND CONTEXT 

Cascetta (2009) defines a travel-demand model as a mathematical relationship between travel-

demand flows and agents (and their characteristics) and activity and transportation supply 

systems (and their characteristics). The review presented by Hafezi et al. (2018) describes the 

major generations of travel demand modeling: trip-based demand models (including the 

conventional four stage model) and the latest approach of activity-based modeling.  

A trip is a one-way movement from a point of origin to a point of destination (ORTÚZAR & 

WILLUMSEN, 2011). Therefore, trip-based models analyze the characteristics of individual 

trips, considering them as independent and isolated. The major drawbacks of this approach are 

the neglection of the sequential information, as the time component is not considered, and the 

disregard for the motivation of trips, as the focus is on the performance of trips, not on their 

purposes (HAFEZI  et al., 2018). 

The conventional four-stage model, also known as the classic transportation model, was 

developed in the 1960s, and it is a sequence of four sub-models: trip generation, distribution, 

modal split and assignment (ORTÚZAR & WILLUMSEN, 2011). This approach assisted 

transportation planning for decades and it enabled travel demand forecasting, usually at the 

scale of aggregated zones. However, a limitation of the classic transportation model was its 

unsuccess in representing trip chaining, which hindered its capability of providing insights for 

policy analysis (HAFEZI et al., 2018). 

By the 1990s, studies began to consider transportation demand as a derived demand, that is 

generated by the human desire of pursuing activities (ETTEMA, 1996), a new approach that 

made way for the last generation of travel-demand models, the activity-based models (ABM). 

When travel is considered a demand derived from people’s need to performing activities, it 

becomes clear that a better understanding of how people organize their activities during a day 

must provide a more solid basis for travel demand modeling (ORTÚZAR & WILLUMSEN, 

2011). By replicating disaggregate travel decisions (at the individual level), activity-based 

models may produce better travel demand predictions, compared to the previous generations of 

modeling approaches (DONG et al., 2006). 
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As described in the literature review presented by Hafezi et al. (2018), several activity-based 

demand models have been developed in the last two decades, being either dependent on the 

random utility theory (econometric-based models) (BHAT et al., 2004; BOWMAN & BEN-

AKIVA, 2001; VOVSHA et al., 2002) or on the context-dependent choice preferences theory 

(computational-based models) (ARENTZE & TIMMERMANS, 2004; AULD & 

MOHAMMADIAN, 2009; MILLER & ROORDA, 2003). Econometric models are usually 

based on the assumption that people make activity-travel decisions while trying to maximize 

their utility. The disadvantage of this approach is that it fails to represent flawed choice 

behavior, and often misrepresents complex underlying relationships. Computational modeling, 

on the other hand, consists of applying sets of rules to describe the decision-making process. 

For example, it can be established that individual decisions should be taken in a certain order, 

or it may be assumed that a certain activity must be included in the activity schedules of a group 

of people. These hard-coded rules are often defined by experts, what gives these models some 

degree of subjectivity. 

Most of the studies conducted in the last decade regarding activity-based modeling have 

addressed only one of the aspects of the daily activity schedule of an individual, such as activity 

sequencing (ALLAHVIRANLOO & RECKER, 2013) or travel mode choice (GOLSHANI et 

al., 2018; TANG et al., 2018). The paper published by Drchal et al. (2019), however, stands 

out among the most recent activity-based modeling research as the authors propose a 

comprehensive framework for generating full and detailed activity schedules for synthetic 

agents depending on their sociodemographic features, called Data-Driven Activity Scheduler 

(DDAS). The framework is composed by four modules: the Activity Type Model (ATM), the 

Activity Duration Model (ADM), the Activity Attractor Model (AAM) and the Mode Choice 

Model (MCM). All these models rely on Machine Learning (ML) algorithms to predict activity 

schedules, and the main contribution of DDAS is the complete dependence on data and 

independence from external subjectivity.  

The DDAS framework appears to represent an important advance in activity-based modeling 

research, and the paper in which it was introduced presents promising results compared to other 

frameworks and models. However, the authors of DDAS mention that although their framework 

was designed for being fully data-driven, for the proof-of-concept they presented, some expert-

designed rules were still part of the structure of the model. One of the reasons for that was the 

small sample size they had available for input. 
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Another issue is that due to the fact that DDAS was published very recently, no other 

applications of its framework are presented in literature. Furthermore, even though the authors 

of DDAS have included in their paper a detailed description of its implementation, they did not 

provide the complete scripts for allowing direct replication of the method. This also hinders the 

conduction of evaluation of the framework. 

1.2 OBJECTIVES 

This work aims to develop a commented replication of the Machine-Learning-based 

methodology proposed by Drchal et al. (2019) for two modules of the DDAS framework for 

activity-based modeling: the Activity Type Model (ATM) and the Mode Choice Model (MCM). 

Specific objectives include: 

• Replicate the two modules of the DDAS framework using data from the Federal District 

Urban Mobility Survey, which is significantly larger than the dataset used in the original 

DDAS study, 

• Investigate possible improvements to be made on the DDAS framework, including its 

validation framework (VALFRAM), 

• Propose, implement, and test modifications on the model, 

• Make all code and data produced in the development of this research publicly available. 

1.3 JUSTIFICATION 

This research is justified by its potential technical and academical contributions. The main 

technical contribution of this study is the continuity it establishes to a state-of-the-art method. 

It is clear that machine learning techniques may provide substantial improvement for activity-

based modeling, but since ML algorithms and related tools are rapidly evolving, research 

regarding this theme must be constantly updated and reviewed, and this thesis addresses this 

aspect. 

In the academical field, this study adds to the relatively small amount of activity-based 

transportation planning research in Brazil. Although there was a consistent research trend 
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regarding this theme in the beginning of the century, Brazilian scientific production on activity-

based modeling on the last decade was scarce. This thesis may recover research focus on the 

development of transportation models that may be useful in practice for planning urban 

development in Brazil. 

A final academical contribution of this study is its accordance to the principles of open science. 

The full publicity of code and data related to this research contributes to the rigor, accountability 

and reproducibility of the applied methods.  

1.4 METHODOLOGICAL DESIGN OF THIS RESEARCH 

The methodological design of this research is presented in Figure 1.1. 

 
Figure 1.1: Methodological design of this research. 
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2 LITERATURE REVIEW 

The contents covered in this chapter are profoundly based on two recent literature reviews: 

Hafezi et al. (2018), which presents the fundamentals and the evolution of activity-based 

models, and Koushik et al. (2020), which specifically describes the use of machine learning 

techniques in the activity-based modeling development. Since the latter study only covers 

research published until June/2018, a complementary review was developed to cover literature 

published between July/2018 and December/2019. Furthermore, a review of the main concepts 

of machine learning that are covered in this document and an analysis on research produced in 

Portuguese related to activity-based modeling are presented.  

2.1 ACTIVITY-BASED TRAVEL DEMAND MODELING 

Hafezi et al. (2018) have performed a comprehensive literature review on activity-based 

models, dividing them into two approaches: econometric models and computational based 

activity scheduling models. Table 2.1 presents the main characteristics of these approaches and 

some examples of models, as described by the referenced authors. 

Table 2.1: Characteristics of econometric activity-based models and computational based 

activity scheduling models (HAFEZI et al., 2018). 

 

 Econometric Activity-Based Models 
Computational Based Activity 

Scheduling Models 

Principle Random utility theory 
Context-dependent choice preferences 

theory 

Decision-

making 

process 

Logit or nested-logit models 
Set of straightforward heuristic rules (e.g.: 

if-then statements) 

Critics 

The predefined choice set for selection of 

daily activity patterns may not represent all 

possible alternatives for individual’s daily 

activity patterns. 

Most models assume a priority order of 

activities in the scheduling process, that may 

result in overestimating the occurrence of 

high priority activities. 

Examples 

DAYSIM (BOWMAN & BEN-AKIVA, 

2001), 

CEMDAP (BHAT et al., 2004), 

MORPC (VOVSHA et al., 2002). 

STARCHILD (RECKER et al., 1986), 

SCHEDULER (GARLING et al., 1994), 

SMASH (ETTEMA, 1996), 

GISICAS (KWAN, 1997), 

AMOS (KITAMURA et al., 1996), 

ALBATROSS (ARENTZE & 

TIMMERMANS, 2004) 

TASHA (MILLER & ROORDA, 2003) 

ADAPTS (AULD & MOHAMMADIAN, 

2009) 
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The authors of the review conclude that despite all the development that activity-based models 

have been through in the last 30 years, future research may still focus on improving prediction 

accuracy, reproducibility, model structure, computational time, large scale operation capability 

and performance at the household level. Hafezi et al. (2018) also mention machine learning 

approaches as a subset of computational based activity scheduling models that have drawn 

attention over the last two decades or so. These models are described in detail in the next 

subsections of this chapter. 

2.2 KEY CONCEPTS IN MACHINE LEARNING 

2.2.1 Decision Tree Classifiers 

2.2.1.1 Generalities 

Decision tree algorithms are used for predicting a label associated with a certain instance x by 

traveling through a tree-shaped structure of classification, from the root node to a leaf 

(SHALEV-SHWARTZ & BEN-DAVID, 2013). A simple example is presented in Figure 2.1, 

in which there is a hypothetical decision tree algorithm to predict the transportation mode a 

person chooses to use when he/she goes to work. 

 
Figure 2.1: Graphical example of a hypothetical decision tree algorithm. 
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On Figure 2.1, it can be observed that the white rectangles are the nodes, which are the features 

used to determine the tree splitting. On this hypothetical example, the features “distance from 

home to work”, “bike ownership” and “car ownership” were used to predict the person’s choice 

of transportation mode. The colored circles represent the leaves of the tree, and they contain the 

specific labels that are aimed for prediction. 

A general pseudocode for building decision trees was presented by Kotsiantis (2007) and it is 

displayed in Figure 2.2. 

 

Figure 2.2: Pseudo-code of a generic decision tree algorithm (KOTSIANTIS, 2007). 

 

There is a variety of decision tree algorithms available. According to Hastie et al. (2009), two 

of the most popular are C4.5 and its major competitor CART (Classification and Regression 

Trees). The C4.5 model was presented by Quinlan (1993) as a successor to the author’s first 

development: the Iterative Dichotomizer 3 (ID3) (QUINLAN, 1986). ID3 created a multiwall 

tree, selecting for each node the categorical feature that generated the highest information gain 

for categorical targets. Trees were grown to their maximum size and then a pruning step was 

applied to improve the ability of the tree to generalize to unseen data. C4.5, on the other hand, 

removed the restriction that features must be categorical by dynamically creating a discrete 

feature based on numerical variables that subdivides the continuous feature value into a discrete 

set of intervals. The algorithm transforms the trained trees into sets of if-then rules, and the 

accuracy of each rule is then evaluated to determine the order in which they should be applied. 

The pruning step is done by removing a rule’s precondition if the accuracy of the rule improves 

without it (PARK et al., 2018). 

1. Check for base cases 

 

2. For each attribute ‘a’: 

a) find the normalized information gain from splitting on ‘a’ 

 

3. Let ‘a_best’ be the attribute with the highest normalized info gain 

 

4. Create a decision node that splits on ‘a_best’ 

 

5. Recurse on the sublists obtained by splitting on ‘a_best’ and add those 

nodes as children 
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According to Park et al. (2018), CART is remarkably similar to 4.5, but it differs in that it 

supports numerical target variables (regression) and does not compute rule sets. CART was 

introduced by Breiman et al. (1984), and it constructs binary trees using the feature and 

threshold that yield the largest information gain at each node. 

2.2.1.2 Mathematical formulation 

In this study, the Scikit-learn Python library is used, which integrates a variety of machine 

learning algorithms for medium-scale problems (PEDREGOSA et al., 2011). Therefore, the 

mathematical formulation of the CART algorithm as it is implemented on the module is 

presented in this topic (SCIKIT-LEARN USER GUIDE, 2020a). 

Given training vectors 𝑥𝑖 ∈ 𝑅𝑛, 𝑖 = 1, … , 𝐼 and a label vector 𝑦 ∈ 𝑅𝑙, a decision tree recursively 

partitions the space such that the samples with the same labels are grouped together. Let the 

data at node 𝑚 be represented by 𝑄. For each candidate split 𝜃 = (𝑗, 𝑡𝑚) consisting of a feature 

𝑗 and threshold 𝑡𝑚, partition the data into 𝑄𝑙𝑒𝑓𝑡(𝜃) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) subsets (Equation 2.2). 

 𝑄𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 ≤ 𝑡𝑚,  Equation 2.1. 

 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑄\𝑄𝑙𝑒𝑓𝑡(𝜃),  Equation 2.2. 

 

 

The impurity 𝐺(𝑄, 𝜃) at node 𝑚 is computed using an impurity function 𝐻 (Equation 2.3). 

 𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑚
𝐻 (𝑄𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
𝐻(𝑄𝑟𝑖𝑔ℎ𝑡(𝜃)),  Equation 2.3. 

 

If the target is a classification outcome taking on values 0, 1, …, K-1, for node 𝑚, representing 

a group 𝑅𝑚 with 𝑁𝑚 observations, let 𝑝𝑚𝑘 be the proportion of class 𝑘 observations in node 𝑚 

(Equation 2.4). 

 𝑝𝑚𝑘 = 1/𝑁𝑚 ∑ 𝐼(𝑦𝑖 = 𝑘)𝑥𝑖∈𝑅𝑚
,  Equation 2.4. 

Then, common impurity measures 𝐻 are the Gini index (Equation 2.5), cross-entropy or 

deviance (Equation 2.6) and misclassification error (Equation 2.7) (HASTIE et al., 2009). 
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 𝐻(𝑋𝑚) = ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)𝑘 ,  Equation 2.5 

 𝐻(𝑋𝑚) = − ∑ 𝑝𝑚𝑘𝑙𝑜𝑔(𝑝𝑚𝑘)𝑘 ,  Equation 2.6 

 𝐻(𝑋𝑚) = 1 − 𝑚𝑎𝑥(𝑝𝑚𝑘),  Equation 2.7 

Finally, select 𝜃 that minimizes the impurity 𝐺 (Equation 2.8). 

 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑄, 𝜃),  Equation 2.8. 

Recurse for subsets 𝑄𝑙𝑒𝑓𝑡(𝜃∗) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃∗) until the maximum allowable depth is reached, 

𝑁𝑚 < 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 or 𝑁𝑚 < 1. 

2.2.2 Random Forest Classifiers 

Breiman (2001) introduces the definition of random forest as a combination of tree predictors 

such that each tree depends on the values of random vector sampled independently and with the 

same distribution for all trees in the forest. Thus, a random forest classifier is created by training 

a number t of decision trees using random subsamples (with replacements) of the training set. 

The prediction of the random forest classifier is then obtained by a majority vote over the 

prediction of each of the t trees (SHALEV-SHWARTZ & BEN-DAVID, 2013). The advantage 

of using this aggregation of tree predictions instead of single Decision Trees is to reduce the 

variance of the results (HASTIE et al., 2009). 

As described in the previous subsection, in this study, the Scikit-learn Python library is used. 

Its implementation of the Random Forest Classifier, 100 trees are generated for each forest and 

the Gini impurity function is used for criteria for information gain. In addition, the number of 

features considered when looking for the best split is the square root of the total number of 

features (SCIKIT-LEARN USER GUIDE, 2020a).  
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2.2.3 Metrics for evaluating classifiers 

2.2.3.1 Classification tasks 

Given a data entry with features {𝑥1, … , 𝑥𝑛} to be assigned into predefined classes 𝐶1, … , 𝐶𝑙, 

this classification task may be of the types: binary, multi-class or multi-labelled (SOKOLOVA 

& LAPALME, 2009). In binary classification, there are only two predefined classes and the 

data entry must be assigned to only one of them. For both multi-class and multi-labelled 

problems, there are more than two predefined classes, and the difference between these 

categories is that while in multi-class tasks the input must be classified into one and only one 

of the 𝑙 classes, in multi-labelled tasks the input may be classified into several classes at once. 

Generally, classification tasks in activity-based transportation models are treated as multi-class 

problems. For instance, in activity type prediction, the aim is to infer what is the next activity 

that an individual will perform among some predefined types, such as 𝑠𝑡𝑢𝑑𝑦, 𝑤𝑜𝑟𝑘, 𝑙𝑒𝑖𝑠𝑢𝑟𝑒, 

for instance. One person cannot be in two places at the same time; therefore, this is a multi-

class classification task. Another example is travel mode choice prediction: although it could 

be treated as a multi-labelled task, by considering that an agent may use several transportation 

modes in the same trip (transferring), usually the prediction is made for each step of the trip, 

treating it as a multi-class classification task.  

The performance of a model that predicts classes may be assessed through several metrics 

(SOKOLOVA & LAPALME, 2009). According to the literature review presented by 

Koushik et al. (2020), the most popular metrics in activity-based transportation modeling are 

accuracy, precision, recall and the F1-score. 

2.2.3.2 Accuracy, precision, recall and f1-score 

In Figure 2.3 it is presented a confusion matrix for a hypothetical travel mode choice prediction 

classification task. In a confusion matrix, also known as error matrix, rows 1, . . , 𝑖 indicate true 

classes in a classification problem while columns 1, … , 𝑗 indicate the classes predicted by the 

model. Therefore, an entry 𝑥𝑖𝑗 in a confusion matrix is the count of instances that actually 

belonged to class 𝑖 and were predicted as being from class 𝑗. This hypothetical data is used in 

this section to exemplify metrics for evaluating a classifier. 
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Figure 2.3: Confusion matrix for a hypothetical travel mode choice prediction task. 

 

Accuracy is the simplest and most intuitive measure for classifiers (GU et al., 2009). Through 

accuracy, the solution produced by the model is evaluated based on the percentage of correct 

predictions over total instances. For the example in Figure 2.3, accuracy would be calculated as:  

(3 + 26 + 38)/100 = 67%. The advantages of accuracy as an evaluation metric for multi-

class classification problems include its simplicity in interpretability and implementation. 

However, one of the main limitations of accuracy is not a good option for dealing with minority 

class instances in imbalanced datasets (CHAWLA et al., 2004). 

The definitions of precision and recall are clearer on binary classification tasks, where there is 

a positive class and a negative class. Precision, then, is used to measure the proportion of correct 

classifications for a class over the total count of predictions for that class. Recall, on the other 

hand, is used to measure the positive instances that are correctly predicted for a class over the 

total actual positive group (HOSSIN & SULAIMAN, 2015). 

In multi-class classification tasks, precision and recall may be weighted, micro- or macro-

averaged over all possible classes (VAN ASCH, 2013). Micro-averaging gives equal weight to 

each occurrence (which means it is equivalent to the accuracy that was calculated previously), 

while macro-averaging gives equal weight to each class. Weighted averages consider the 

proportion of true occurrences for each class. Equations 2.9 to 2.11 indicate the calculation of 

precision for each class of the hypothetical example that was presented in Figure 2.3, while 

Equations 2.12 to 2.14 display the calculation micro-, macro-averaged and weighted precisions 

for the whole set of results. 
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 precision(bike) =
3

3+0+0
=

3

3
= 100%,  Equation 2.9. 

 precision(bus) =
26

1+26+12
=

26

39
= 66.7%,  Equation 2.10. 

 precision(car) =
38

1+19+38
=

38

58
= 65.5%,  Equation 2.11. 

 precision(micro-averaged) = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
3+26+28

100
= 67%,  Equation 2.12. 

 precision(macro-averaged) =
100+66.7+65.5

3
= 77.4%,  Equation 2.13. 

 precision(weighted) =
(5∙100)+(45∙66.7)+(50∙65.5)

3
= 67.8%,  Equation 2.14. 

Similarly, Equations 2.15 to 2.17 indicate the calculation of recall for each class of the 

hypothetical example that was presented in Figure 2.3, while Equations 2.18 to 2.20 display the 

calculation of micro, macro-averaged and weighted recalls for the whole set of results.  

 recall(bike) =
3

3+1+1
=

3

5
= 60.0%,  Equation 2.15. 

 recall(bus) =
26

0+26+19
=

26

45
= 57.8%,  Equation 2.16. 

 recall(car) =
38

0+12+38
=

38

50
= 76.0%,  Equation 2.17. 

 recall(micro-averaged) = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
3+26+28

100
= 67%,  Equation 2.18. 

 recall(macro-averaged) =
60+57.8+76

3
= 64.6%,  Equation 2.19. 

 recall(weighted) =
(5∙60)+(45∙57.8)+(50∙76)

3
= 67.0%,  Equation 2.20. 

Precision is the metric that assesses to what extent the classifier was correct in classifying 

examples as positives (for each class), while recall assesses to what extent all the examples that 

needed to be classified as positive (for each class) were so (GU et al., 2009). For imbalanced 
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datasets, it is common to combine both precision and recall into a single metric for evaluating 

classification models, which is called F-measure, and its calculated as presented in 

Equation 2.21. The 𝛽 term within the F-measure equation controls the influence of recall and 

precision separately. When 𝛽 = 1, the F-measure represents a harmonic mean between 

precision and recall, also known as F1-score (Equation 2.22). Since the harmonic mean of two 

numbers tends to be closer to the smaller of the two, a high F1-score value indicates that both 

recall and precision are reasonably high (GU et al., 2009). 

 F-measure =
(1+𝛽)∙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽∙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
, Equation 2.21. 

 F1-score =
2∙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, Equation 2.22. 

Equations 2.23 to 2.25 indicate the calculation of F1-score for each class of the hypothetical 

example that was presented in Figure 2.3, while Equations 2.26 to 2.28 display the calculation 

of micro, macro-averaged and weighted F1-scores for the whole set of results.  

 F1-score(bike) =
2(1∙0.6)

1+0.6
=

0.12

1.6
= 0.750,  Equation 2.23. 

 F1-score(bus) =
2(0.667∙0.578)

0.667+0.578
=

0.771

1.245
= 0.619,  Equation 2.24. 

 F1-score(car) =
2(0.655∙0.760)

0.655+0.760
=

0.996

1.415
= 0.704,  Equation 2.25. 

 F1-score(micro-averaged) = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
3+26+28

100
= 0.670,  Equation 2.26. 

 F1-score(macro-averaged) =
0.704+0.619+0.704

3
= 0.691,  Equation 2.27. 

 F1-score(weighted) =
(5∙0.750)+(45∙0.619)+(50∙0.704)

3
= 0.668,  Equation 2.28. 

It is important to note that the selection of the most appropriate metric for evaluating a model 

depends on the characteristics of the aspect being predicted. In Figure 2.4, two hypothetical 

confusion matrices are presented, referring to a travel mode choice classification task. Although 

the value of accuracy for both models A and B are the same, and their respective values of 

macro-averaged F1-score are similar, a close look on the detailed results reveal they are actually 
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quite different. In Model B, no prediction was made assigning an instance to the class “Bike”. 

Since the class distribution was highly imbalanced, this had no effect in the accuracy of the 

predictor, compared to Model A. F1-score also was almost not impacted at all. The only metric 

that reflected the absence of “Bike” instances predicted was the macro-averaged recall, which 

is significantly lower in Model B compared to Model A. 

For transportation planning, a prediction that completely ignores the existence of a certain class 

of transportation mode may lead to severe faults in policy design. This exemplifies the 

importance of adequately selecting evaluation metrics for classification models.  

 
Figure 2.4: Comparison between evaluation metrics based on two hypothetical travel mode 

choice classification task. 

 

2.3 MACHINE LEARNING AND ACTIVITY BASED MODELS 

2.3.1 Existing literature review on machine learning and ABM 

Machine Learning (ML) are programming techniques developed for finding patterns in 

datasets, which may be used for predicting future events or subsidizing decision-making 

(MURPHY, 2012). These methods are especially useful for analyzing large volumes of data or 

complex systems. A field in which may be convenient to apply ML methods is transportation, 

not only because of the amount of information associated with the system operation, but also 

due to the complexity of user’s behavior (ABDULJABBAR et al., 2019). 
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Koushik et al. (2020) have developed a broad literature review in the field of activity-travel 

behavior analysis that uses ML techniques, including modeling activity participation, activity 

sequencing, duration of activities, time of the day of activity travel, location choice, travel mode 

choice and route choice. In addition, Koushik et al. (2020) describe the main studies that 

regarded ML applications in activity-based models and that were published between the 1st of 

January, 1993 and the 12th of June, 2018. A summary of these studies and their respective ML 

methods is presented in Table 2.2. 

Table 2.2: Literature about ML applications for ABM, extracted from the review by Koushik 

et al. (2020), classified by machine learning algorithm (rows) and applications (columns). 

 

 

Activity choice / 

sequencing / trip 

chains 

Travel mode choice 
Other aspects / 

Various aspects 

Neural 

Networks 

Shmueli et al. 

(1996), Zhao & 

Shao (2010), Kato 

et al. (2002). 

Hensher and Ton (2000), 

Cantarella and de Luca  (2005), 

Hussain et al. (2017), 

Golshani et al. (2018). 

Mohammadian & Miller 

(2002). 

Support 

Vector 

Machines 

Allahviranloo & 

Recker (2013), 

Yang et al. (2016). 

Tang et al. (2018) 

Weng et al. (2018). 
Lin et al. (2009). 

Decision 

Trees 

Přibyl & Goulias 

(2005), Pitombo et 

al. (2008). 

Xie et al. (2003). 

Thill & Wheeler (2000), 

Yamamoto et al. (2002), 

Arentze & Timmermans 

(2004), Beckman & Goulias 

(2008), Pitombo et al. 

(2011). 

Bayesian 

Networks 
- 

Verhoeven et al. (2007), 

Ma (2015), Ma et al. (2017), 

Wang et al. (2017). 

Arentze & Timmermans 

(2004), Gogate et al. (2005), 

Ma & Klein (2018), 

Zhu et al. (2018), 

Li et al. (2018). 

Random 

Forests 

Ghasri et al. 

(2017). 

Abdulazim et al. (2013), 

Zhou et al. (2016). 
Witayangkurn et al. (2013). 

K-means 

clustering 
Ma et al. (2013). 

Pronello & Camusso (2011), 

Li et al. (2013). 

Pirra & Diana (2016), 

Rakha et al. (2014). 

Reinforceme

nt Learning 

(Q-Learning) 

Charypar & Nagel 

(2005), Vanhulsel 

et al. (2009), Yang 

et al. (2014). 

- 

Zhang & Xu (2005), 

Tavares & Bazzan (2012), 

Wei et al. (2014). 

Various ML 

algorithms 
- 

Xie et al. (2003), Zhang & Xie 

(2008), Stenneth et al. (2011), 

Omrani et al. (2013), Feng & 

Timmermans (2016), Yang et 

al. (2016), Zhu et al. (2016), 

Hagenauer & Helbich (2017), 

Mäenpää et al. (2017), 

Rodrigues et al. (2017), 

Lindner et al. (2017), Wang et 

al. (2017a), Wang et al. 

(2017b). 

Roorda et al. (2006), 

Lin et al. (2009), 

Sun & Park (2017), 

Paredes et al. (2017). 
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With their review, the authors concluded that one of the major issues of many ML techniques 

is the lack of interpretability of the results, with the models behaving as “black-boxes”. 

Moreover, the authors suggest that future research should focus on spatiotemporal 

transferability of the models, in addition to interpretability and accuracy. 

2.3.2 Complementary review on machine learning and ABM 

2.3.2.1 Review approach 

Since the literature review presented by Koushik et al. (2020) only covers research published 

until June/2018, a complementary review was developed to cover literature published between 

July/2018 and December/2019. The scientific databases that were selected for the purpose of 

this review were Web of Science and Scopus, as both are consolidated search engines in the 

subject field of transportation. 

Query strings included terms related to activity-based models, transportation, and machine 

learning algorithms, and were limited to occurrences in the document’s title, abstract or 

keywords. Specifically for the queries performed on the Scopus database, a filter was also 

included to exclude documents related to the subject areas of physics and astronomy, chemistry, 

biological sciences, health, and medicine. Table 2.3 presents the final query strings searched on 

both databases and the number of results obtained. 

2.3.2.2 Search results and analysis 

After consolidating results from both Scopus and Web of Science, document abstracts were 

read in order to filter the ones that actually regarded activity-based transportation models and 

machine learning. For both databases, it was only possible to select a whole year on the filter 

tool. Thus, documents published before July/2018 were manually excluded, because they were 

already included in the review presented by Koushik et al. (2020). The final consolidated list 

of results included 27 documents and it is presented in Appendix A. 
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Table 2.3: Search terms and number of results for queries on both Scopus and Web of 

Science. 

Database Search terms 
Number 

of results 

Scopus 

TITLE-ABS-KEY ( ( "activity-based"  OR  "mode choice"  OR  "schedule" )  

AND  ( "transport"  OR  "transportation"  OR  "mobility" )  AND  ( "neural 

networks"  OR  "SVM"  OR  "support vector machines"  OR  "decision tree"  OR  

"random forest"  OR  "Bayesian networks"  OR  "machine learning"  OR  "deep 

learning" ) )  AND  PUBYEAR  >  2017  AND  PUBYEAR  <  2020  AND  ( 

EXCLUDE ( SUBJAREA ,  "PHYS" )  OR  EXCLUDE ( SUBJAREA ,  

"CHEM" )  OR  EXCLUDE ( SUBJAREA ,  "BIOC" )  OR  EXCLUDE ( 

SUBJAREA ,  "MEDI" )  OR  EXCLUDE ( SUBJAREA ,  "CENG" )  OR  

EXCLUDE ( SUBJAREA ,  "HEAL" )  OR  EXCLUDE ( SUBJAREA ,  

"PHAR" ) ) 

93 

Web of 

Science 

TOPIC ( ( "activity-based"  OR  "mode choice"  OR  "schedule" )  AND  ( 

"transport"  OR  "transportation"  OR  "mobility" )  AND  ( "neural networks"  

OR  "SVM"  OR  "support vector machines"  OR  "decision tree"  OR  "random 

forest"  OR  "Bayesian networks"  OR  "machine learning"  OR  "deep learning" ) 

) TIMESPAN 2018 - 2019 

45 

 

Results indicated that in the last two years, the majority of studies related to activity-based 

models and machine learning regarded application of neural networks. Almost all of them 

addressed the issue of travel mode choice modeling, either applying exclusively Neural 

Networks (ASCHWANDEN et al., 2019; ASSI et al., 2018; LEE et al., 2018; MINAL et al., 

2019) or comparing the results using Neural Networks to the ones using Support Vector 

Machines (ASSI et al., 2019; Z. ZHOU et al., 2018). Model of vehicle ownership (HA et al., 

2019) and activity type prediction (KREMPELS et al., 2019) were also a field of research using 

neural networks. 

Travel mode choice modeling was the predominant focus of research not only in applications 

of neural networks, but also for other ML techniques such as Random Forests (CHAPLEAU et 

al., 2019; CHENG et al., 2019), Bayesian networks (ZHOU et al., 2019; ZHU et al., 2018), 

Support Vector Machines (PIRRA & DIANA, 2019; WENG et al., 2018) and Decision Tree 

(DIANA & CECCATO, 2019). Hybrid techniques such as the combination of the unsupervised 

Denoising Autoencoder (DAE) with supervised Random Forests (CHANG et al., 2019) were 

also applied in an attempt to better understand people’s travel mode choice. 
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Modeling activity choice and activity sequencing using machine learning was not an issue 

frequently addressed by research in the last two years. Hafezi et al. (2018) proposed an 

application of the Random Forest algorithm for learning and modeling the daily activity 

engagement patterns of individuals. Cui et al. (2018), on the other hand, employed a Bayesian 

network to infer current and next trip purpose of individuals by using social media data. 

Two studies regarding machine learning and activity-based models in the last two years drawn 

attention in comparison to the ones that were already mentioned, because of its completion on 

predicting several aspects of the activity schedule of a person. The first one is the study 

conducted by Hafezi et al. (2019) which presented a modeling framework that derived clusters 

of homogeneous daily activity patterns from a household travel diary survey. Then, based on 

the socio-demographic characteristics of individuals, the authors could successfully predict 

various aspects related to their activities, start time, duration, travel distance, and travel mode. 

Another comprehensive model framework was the one developed by Drchal et al. (2019), 

which is composed by four modules, each one responsible for predicting one aspect of the 

activity schedule of the individual: activity type, duration, location and travel mode choice. The 

main distinction of the approach presented in this study is its complete dependence on data and 

independence from hard-coded knowledge of transportation behavior experts. 

2.4 RESEARCH ON ACTIVITY-BASED MODELING IN PORTUGUESE 

2.4.1 Review approach 

For reviewing literature created regarding activity-based modeling in Portuguese language, 

queries were performed on the database Catalog of Ph.D. Dissertations and Master’s Thesis 

(Catálogo de Teses e Dissertações), organized by the Coordination for the Improvement of 

Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 

– CAPES), which consolidates Brazilian graduate scientific production since 1987. 

Queries were performed by using terms in Portuguese, as presented in Table 2.4. Results were 

filtered first by reading the documents’ titles and checking if they seemed consistent to the 

theme of activity-based modeling and then by reading the documents’ abstracts, to confirm their 

adequacy to the subject. Finally, when documents were selected for full-extent reading, a 

procedure called forward snowballing was conducted, which consists of finding relevant 
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citations in a research. This allowed the finding of other studies related to the theme of interest 

that were not part of the database search results. 

2.4.2 Query results and analysis 

The final list of 14 Brazilian studies regarding activity-based modeling (8 from the queried 

database and 6 from snowballing) is presented in Appendix B. It is important to note that these 

may not be all literature developed in Brazil regarding the theme, since the search tool is limited 

to Master’s theses and Ph.D. dissertations. 

Table 2.4: Search terms and number of results for queries on the Brazilian Catalog of Ph.D. 

Dissertations and Master’s Thesis. 

 

Search terms Results 
Results after 

title filtering 

Results after 

abstract filtering 

“baseado em atividades” AND “transportes” 6 1 1 

“modelo” AND “atividades” AND “transportes” 

(FILTER: theme areas “Engenharia de Transportes”, 

“Engenharia Civil”) 

81 13 4 

“escolha modal” 58 18 3 

 

The main difference that is observed between Brazilian research and the studies worldwide 

regarding activity-based models is that in Brazil the majority of dissertations and theses have 

focus on modeling activity patterns or activity sequences, while international research is heavily 

concentrated in predicting travel mode choice. The Decision Tree algorithm is the most popular 

technique for modeling activity patterns in Brazilian studies (DALMASO, 2009; ICHIKAWA, 

2002; PITOMBO, 2007; SILVA, 2006; SOUSA, 2004), although neural networks (TACO, 

2003) and structural equations (MEDRANO, 2012) may also be observed in the related 

literature. 

Only three studies were identified addressing the issue of travel mode choice and explicitly 

mentioning the activity-based theory for transportation modeling, two of them applying the 

algorithm of Neural Networks (ALVES, 2011; WERMERSCH, 2002), and one using the 

Decision Tree technique (COSTA, 2013). However, while the literature review was being 

conducted, other studies that did not explicitly mention the activity-based theory but also 

regarded travel mode choice modeling were identified. Most of these studies developed logit 

classification models to predict travel mode choice (ANCHANTE, 2017; DEUS, 2008; 
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RIBEIRO, 2014; T. SILVA, 2010), but the techniques of Structural Equations modeling 

(PAIVA JUNIOR, 2006), clustering (BARBOSA, 2014) and Decision Trees classifiers 

(SILVA, 2017) were also identified among them. 

The two most comprehensive Brazilian studies regarding activity-based modeling, in terms of 

aspects of the activity diary being modeled are Pitombo (2003), which applies a Decision Tree 

based data miner to model activity sequencing, travel mode choice, travel time and duration, 

and Arruda (2005), which presents an application of the ALBATROSS model as developed by 

Arentze & Timmermans (2004) in a Brazilian city. 

2.5 CONCLUSIONS OF THE CHAPTER 

The contents covered in this chapter were profoundly based on two recent literature reviews: 

Hafezi et al. (2018), who presented the fundamentals and the evolution of activity-based 

models, and Koushik et al. (2020), who specifically described the use of machine learning 

techniques in the activity-based modeling development. Since the latter study only covered 

research published until June/2018, a complementary review was developed to cover literature 

published between July/2018 and December/2019. 

The most recent studies, reported in the complementary literature review, are consistent with 

the research trends identified by Koushik et al. (2020). Travel mode choice is still the most 

common issue addressed by research, specially by using the algorithm of Neural Networks for 

travel mode choice prediction. Not many studies focused on examining more than one aspect 

of the activity schedule of agents (DRCHAL et al., 2019; HAFEZI et al., 2019), although the 

development of comprehensive frameworks would significantly enrich transportation planning.  

By analyzing Brazilian research on the theme of activity-based modeling, both for publications 

in English and in Portuguese, it appears that it did not develop on the same pace as international 

research. Although numerous studies about the theme were developed in the early 2000s, 

Brazilian scientific production on activity-based modeling on the last decade was scarce.  

It was observed that few studies provide a detailed description of the procedures conducted in 

their development, and virtually none of them make available the computational scripts, 

software configuration and other relevant data that would be important for reproducibility of 

the study.  
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3 METHOD 

In this chapter the general formulation of the Data-Driven Activity Scheduler (DDAS) and its 

validation framework is presented. Moreover, the available data, used as input in the current 

implementation, is described, as well as the procedure followed for organizing and preparing 

the dataset. 

3.1 THE DATA-DRIVEN ACTIVITY SCHEDULER 

3.1.1 Algorithm design considerations 

The Data-Driven Activity Scheduler (DDAS), as it was first proposed, is composed by four 

modules: Activity Type Model (ATM), Activity Duration Model (ADM), Activity Attractor 

Model (AAM) and Mode Choice Model (MCM) (DRCHAL et al., 2019). Figure 3.1 indicates 

that in this model, an agent is characterized by a set of sociodemographic features k and an 

activity schedule s. Each activity that composes the schedule is also described by a set of 

variables (type, start time, duration…). 

 
Figure 3.1: Agent’s elements, schedule composition and activities’ features. 

 

The objective is to sample schedules 𝑠 from the conditional distribution 𝑝(𝑠|𝑘). From the 

machine learning paradigm, a generative model 𝑝𝜃(𝑠|𝑘) must be found, where 𝜃 represents the 

trainable parameters of the model. Equation 3.1 presents the factorization of 𝑝𝜃(𝑠|𝑘). 

 𝑝𝜃(𝑎𝑖|𝑎𝑖−1, 𝑘) = 𝑝𝜃(𝑡𝑖, 𝑑𝑖 , 𝑙𝑖, 𝑚𝑖, 𝑑𝑖
𝑇|𝑎𝑖−1, 𝑘) = 𝑝𝜃(𝑡𝑖|𝑎𝑖−1, 𝑘) ∙ 𝑝𝜃(𝑑𝑖|𝑡𝑖, 𝑎𝑖−1, 𝑘) ∙

𝑝𝜃(𝑙𝑖|𝑑𝑖, 𝑡𝑖 , 𝑎𝑖−1, 𝑘) ∙ 𝑝𝜃(𝑚, 𝑑𝑇|𝑙𝑖, 𝑑𝑖 , 𝑡𝑖, 𝑎𝑖−1, 𝑘),  Equation 3.1. 

Each term of this factorization represents one of the DDAS modules. In this study, the objective 

is to implement the first module (ATM), which is the term 𝑝𝜃(𝑡𝑖|𝑎𝑖−1, 𝑘) of the equation, and 
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the forth module (MCM), which is the term 𝑝𝜃(𝑚, 𝑑𝑇|𝑙𝑖, 𝑑𝑖, 𝑡𝑖 , 𝑎𝑖−1, 𝑘). It means that a chain of 

activities is created for each agent, in which each activity type is defined by the characteristics 

for the agent and by the previous activity performed. In fact, some information is also provided 

regarding the sequence of activities that come before the previous one, but this will be further 

described in the next sections. The result obtained from the ATM module, ignoring the other 

modules, is a chain of activity types a person performs during a day, for instance, the chain 

“home-work-home” or “home-study-other-home”, and using MCM the transportation modes 

the agent chooses to perform the trips between each pair of activities are predicted. 

3.1.2 Required dataset 

In the original DDAS method designed by Drchal et al. (2019), input variables are divided into 

three categories. The first set of variables, denoted socio-demography, corresponds to the 

following features of the agents: household size, age, gender, car available in the household, 

student, education achieved (low, mid or high level), driver’s license and public transportation 

pass. 

The second category of variables is called reach descriptor, and it includes an estimation of the 

trip duration between the agent’s home and the place where he/she performs their main activity 

(work or school). This value is computed on the administrative region (AR) level (origin AR 

and destination AR), for each transportation mode (public transportation, walking, car and 

bike) at a specific time (8 AM) of a regular weekday. For instance: if one needs to compute the 

reach descriptor variables for the origin-destination pair of hypothetical regions Alpha and Beta, 

they must randomly select three points within each region and calculate travel duration between 

these points, at 8 AM of a weekday, for each transportation mode. Then, one must take the 

average of these values and assign these reach descriptor features for all agents that live in 

region Alpha and work or study in region Beta. 

The third set of variables is the activity type and mode count, which keeps a counter for each 

activity type (sleep, work, school, leisure and shop) that has already been performed by the 

agent up to that point of the travel diary. This is a way of incorporating information of the 

activity history into the prediction of each next activity type and travel mode choice. 
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3.2 VALIDATION FRAMEWORK 

3.2.1 Generalities 

The same group of authors that proposed DDAS had previously developed a framework to 

statistically quantify the validity of activity-based transportation models, called VALFRAM 

(Validation Framework for Activity-Based Models) (DRCHAL et al., 2016). Until then, each 

study that regarded activity-based modeling designed their own validation method, that could 

be a measure of accuracy prediction per trip (GOLSHANI et al., 2018), simulation of traffic 

volumes (M. YANG et al., 2014), or even comparison between expected and observed activity 

positions within schedules (ALLAHVIRANLOO & RECKER, 2013). VALFRAM came to 

address the lack of standardized validation frameworks for general activity-based models, and 

it is based on quantification of model validity using objective statistical metrics. Since in this 

study only the ATM and the MCM modules are replicated, the following description covers 

only the VALFRAM validation tasks that are related to the structure of the activity schedule 

and travel mode choice. 

3.2.2 Activity count validation 

In VALFRAM, the comparison between activity counts in actual and predicted activity 

schedules is based on the Pearson’s Χ2 statistical test. Frequencies 𝑓𝑖 are collected for both 

model and validation datasets. The value of 𝑓𝑖 is defined as the number of schedules in which 

the number of activity occurrences is exactly 𝑖 for the selected activity type (considering only 

frequencies for 𝑖 > 0). For example, considering activity leisure, 𝑓1 represents the number of 

schedules that contain only one occurrence of activity type leisure, 𝑓2 the number of schedules 

that contain 2, and so on. 

3.2.3 Travel mode choice validation 

The validation of the mode choice for a target activity type 𝑝(𝑚𝑜𝑑𝑒|𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑦𝑝𝑒) is again 

based on the chi-square (Χ2) statistic. In this validation task, there are collected counts per each 

mode for each target activity of choice. For instance: for each 100 trips whose destination is 

“work”, how many are performed by car? And by public transportation? It is important to note 

that the same number of activities should be used when evaluating multiple models in order to 

get comparable Χ2 values. 
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3.3 DATA DESCRIPTION AND PREPARATION 

3.3.1 Available dataset 

For the current implementation, it was used the travel data collected by the Brasilia Metro 

Company, in Brasilia, Federal District, Brazil. The Federal District Urban Mobility Survey - 

FDUMS (Pesquisa de Mobilidade Urbana do DF - PMU, in Brazilian Portuguese) was part of 

the Federal District Rail Transit Development Plan (Plano de Desenvolvimento do Transporte 

Público sobre Trilhos do DF – PDTT/DF), which aimed  to design the ideal collective passenger 

transportation system of the region for the next twenty years (COMPANHIA DO 

METROPOLITANO DO DISTRITO FEDERAL, [s.d.]). 

The main objective of the FDUMS was to identify mobility patterns and socioeconomic 

characteristics of the population in the Metropolitan Region of Brasilia (COMPANHIA DO 

METROPOLITANO DO DISTRITO FEDERAL, 2018). Interviews were conducted between 

March 2016 and December 2016 with people from a group of households that were randomly 

selected from all administrative regions in Federal District. In order to ensure a representative 

sample, a stratified sampling design was defined according to spatial criteria and to the average 

household income range of the census tracts. Valid results were obtained for 19,252 households 

(about 2.6% of the total within the urban zone), with reference to 61,358 individuals and 

113,398 weekday trips. 

Although the FDUMS included only households within the administrative regions that 

constitute the Federal District, possible answers for trip destinations (activity locations) 

included also nearby municipalities, that are part of the Brasilia Metropolitan Area (Região 

Integrada de Desenvolvimento do Distrito Federal e Entorno – RIDE, in Brazilian Portuguese). 

The spatial scope of the survey is presented in Figure 3.2. 
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Figure 3.2: Spatial scope of the FDUMS survey. 
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Results of the FDUMS were made available as four separate tables, characterized as follows: 

• Table Domicilio (Household): an identification number was assigned to each household 

that was part of the survey, and that is the primary key of this dataset. This table includes 

data such as the administrative area where the household is located, the number of 

people that lives within the household, number of rooms of the household (number of 

bedrooms, bathrooms), number of vehicles owned (cars, bicycles, motorcycles), total 

income of the family, and other socioeconomic information. 

• Table Morador (Person): this table is composed by information about the residents of 

each household that was part of the survey, and these individuals were identified by a 

number, which is the primary key of the dataset. Data such as age, gender, education 

achieved, employment and driver’s license ownership for each person are available. 

Obviously, there is also the identification number of the household the person is part of, 

which allows cross-referencing with information of the dataset described previously 

(table Domicilio). 

• Table Viagem (Trip): this table consolidates information about the trips that survey’s 

respondents perform on a typical day. It is the travel diary that was mentioned along this 

document. The primary key of this dataset is the identification number of the trip, but 

the identification number of the person which performed the trip is also available. Trips 

are defined by their origin and destination locations (on the administrative regions level 

and on microzoning level as well), transportation mode used during the trip, trip purpose 

(activity that will be performed on the destination), start and end times, and other details. 

• Table Etapa (Stage): this table regards details about each step of a trip. For instance, 

there are trips performed between locations A and B, but in the meantime the person 

needs to take different transportation modes (maybe a bus and then a train). The purpose 

of this table is to present these details of the trips’ steps. The primary key of this dataset 

is the identification number of the steps, but the number of the trip they are related with 

is also available. This table will not be used in the current study, because information 

available on table Viagem (Trip) is sufficient for the purpose of the model. 
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All tables that compose the FDUMS survey results were translated into English and they were 

made publicly available in the Kaggle online community of data science and machine learning 

practitioners (MIRANDA, 2020). 

3.3.2 Obtaining and organizing the socio-demography (soc) dataset 

The process of obtaining the soc dataset was pretty straightforward, as most of the required 

variables had been collected directly in the FDUMS. For instance, the features gender and 

driver’s license, that are described by Drchal et al. (2019) as part of the soc dataset, were 

obtained directly from the FDUMS dataset, as binary variables with the possible answers 

“male” or “female” and “yes” or “no”, respectively. On the organized dataset that was used in 

the current study, these variables were called gender and has_driver_license. 

Another required variable was age, whose type was not defined on the article that originated 

the model. In the FDUMS dataset, age information for each agent was presented as a categorical 

variable, with thirteen possible age ranges. On the organized dataset, this feature was called 

age_group. The variable education level was also a categorical variable in the FDUMS dataset, 

with eleven possible answers. This is slightly different from the original model described by 

Drchal et al. (2019), where there were three possible answers for the education level variable: 

low, mid or high. 

The household size feature referred to the number of people that lived in the individual’s 

household. This information was obtained with a cross-referencing process between the 

FDUMS Household and Person tables, as the number of inhabitants of each household was 

presented in the Household table and this information had to be disaggregated for each 

individual. On the organized dataset, this feature was identified as the household_size integer-

typed variable. The same process was required to obtain the car available feature, which 

indicated whether there was a car in the individual’s home or not. On the organized dataset, this 

feature was identified as the is_car_availabe binary (“yes” or “no”) variable. The student 

feature, which described whether the person was a student or not, was obtained with a similar 

process, but by using cross-referencing between the FDUMS Trip and Person tables. If the 

person had any activity of the type study in his/her schedule, he/she was considered to be a 

student. On the organized dataset, this feature was identified as the is_student binary (“yes” or 

“no”) variable. 
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The variable public transportation pass, which indicated whether the person owned a public 

transportation card and was described by Drchal et al. (2019) as part of the soc dataset, was not 

available on the FDUMS datasets, thus it was not considered in this study. Finally, Table 3.1 

presents the features that compound the organized soc dataset developed for the model of the 

current research. 

Table 3.1: Features of the organized soc dataset. 

 

Column name on 

the organized 

dataset 

Value type on 

the organized 

dataset 

Description 
Column name on the 

FDUMS dataset 

Equivalent 

feature on 

the original 

DDAS 

model 

person_id Integer 
Identification code for 

each individual 

TABLE Person: 

person_id 
- 

household_id Integer 

Identification code for 

the household to which 

the individual belongs 

TABLE Person: 

household_id 
- 

household_size Integer 

Number of people that 

live in the individual’s 

household 

TABLE Household: 

people_in_the_household 

TABLE soc: 

household 

size 

age_group 
Categorical 

(13 options) 

Age range of the 

individual 
TABLE Person: age 

TABLE soc: 

age 

gender 
Binary (male or 

female) 
Gender of the individual TABLE Person: gender 

TABLE soc: 

gender 

is_car_availabe 
Binary 

(yes or no) 

Whether there is a car 

available in the 

individual’s household 

IF(TABLE Household: 

vehicles >= 1) 

TABLE soc: 

car available 

is_student 
Binary 

(yes or no) 

Whether the individual 

is a student 

IF(TABLE Trip HAS 

“Study”) 

TABLE soc: 

student 

education_level 

 

Categorical 

(11 options) 

Education level 

achieved by the 

individual 

TABLE Person: 

education_level 

TABLE soc: 

education 

achieved 

(3 options) 

has_driver_license 
Binary 

(yes or no) 

Whether the person has 

a driver license 

TABLE Person: 

has_driver_license 

TABLE soc: 

driver’s 

license 

 

Up to this point of the data organization process, the input dataset is composed by 61,358 

individuals, which is the number of respondents to the FDUMS. However, some data selection 

is required in order to keep data consistency before running the model. First, it was conducted 

a removal from the dataset of rows that represented individuals for which there was no reference 

on the Trip table, which means that no activity schedule was collected for that person during 

the survey (17,257 instances, or 28.1% of the original dataset). Then, rows with missing values 
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were deleted (when the interviewee decided not to answer the question). There were found 239 

rows with missing values for at least one of the features (0.54% of the remaining records). 

In sequence, individuals that are 14 years old or younger were removed from the dataset, 

because the intention is to analyze transportation choice and behavior, and it is clear that 

children often follow their parents and do not have this decision capacity. This group 

represented 7,280 individuals (16.6% of the remaining dataset). Finally, individuals who had 

incomplete schedules (diaries that did not start and finish at home) were deleted. After all this 

selection process, the soc dataset organized for being an input to the model had 34,340 rows 

(individuals’ records). 

3.3.3 Obtaining and organizing the reach dataset 

As it was described in section 3.1.2, the reach dataset that is required as input by the DDAS 

model includes features that represent an estimation of the trip duration between the person’s 

home and the place where he/she performs their main activity (work or school). This 

information was not directly available from the FDUMS data, so a method was developed to 

obtain it. Considering that the reach descriptor was calculated on the administrative region 

level, it was developed a matrix of trip durations between pairs of origin-destination 

administrative areas, that is identified as a trip duration matrix. An example of this kind of 

matrix is presented in Figure 3.3. 

 
Figure 3.3: Example of a trip duration matrix. 
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In Figure 3.3, values dij represent the average trip duration between regions i and j, on a regular 

weekday, at 8 AM, using a certain type of transportation mode. The idea is that if there is a trip 

duration matrix for all administrative areas in Federal District and the municipalities that 

compose the Brasilia’s Metropolitan Area, queries may be performed in this matrix for the reach 

descriptor of each individual in the dataset, considering the place he/she lives is known and so 

is the place where he/she performs his/her main activity (work or study). 

In order to create the trip duration matrix for the Federal District administrative areas, the 

following input data was used: 

• An ESRI Shapefile set of documents, in which the polygon layer is formed by features 

representing the administrative areas, whose names are presented in a field. For the model, 

the Shapefile was available as one of the products of the Federal District Rail Transit 

Development Plan, together with the FDUMS. The vector was composed by the 31 

administrative areas (or neighborhoods) of the Federal District and the 21 municipalities 

that form the Brasilia Metropolitan Area. 

• Lists containing the name of the administrative areas or municipalities that must be 

considered as origins and destinations on the trip duration matrix. For the purpose of this 

research, these lists were obtained from the FDUMS datasets and registered them on the 

CSV (comma-separated values) format. 

The algorithm to create the trip duration matrix was developed in Python programming 

language. First, a randomPoint function was defined for converting the Shapefile polygon into 

points and then returned the coordinates for one of these points. Then, it was defined a 

commuteTime function that returned the trip duration between two points, given a day and a 

transportation mode, using the Google Maps API. Finally, the randomPoint function was 

applied to select origin and destination points for each pair of administrative regions and use 

them as input to the commuteTime function. The commuteTime was calculated for three pairs 

of points, for each pair of administrative regions, and filled in the trip duration matrix instance 

with the average of these values. 

Trip duration matrices were developed for the transportation modes: car, public transportation, 

walking, and bike. To be consistent with the model developed by Drchal et al., (2019), if there 
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was no connection from the person’s home to his/her main activity location given a certain 

mode (for instance, there is no public transportation accessibility for these regions), a value of 

-1 was assigned for the reach feature. Detailed description of the procedure for creating trip 

duration matrices and the results obtained for the described dataset may be found on 

Appendix C. 

An issue that was verified during the process of creating the reach dataset was that some of the 

trip records for the individuals included a destination named “External”, that was not described 

on the dataset documentation. Since the frequency of these occurrences was low (119 

individuals, or 0.33% of the total records of the database that was developed in section 3.3.2), 

it was decided to simply remove these rows from the dataset. 

3.3.4 Obtaining and organizing travel information 

To conclude the organization of the input dataset, it was required to include information about 

the trips performed by the agents. Three columns are now appended to the organized dataset: 

activity_origin (meaning current activity type), activity_destination (next activity type) and 

mode_type (referring to the travel mode choice). These features are available on the FDUMS 

table Trip (Viagem). 

In the framework proposed by Drchal et al. (2019), possible activity types are: sleep, work, 

school, leisure and shop. Activity type sleep means the individual is at home. In the FDUMS 

dataset, however, activity types are organized into different categories. Thus, a new activity 

type other was created, although it was not part of the original set of categories, in order to 

incorporate some of the FDUMS types, which included 15.4% of all trips recorded. Table 3.2 

displays the correspondence made between these different groups. 

The same issue was verified for the travel mode choice variable, which is called 

modoagregado2 on the FDUMS dataset. Although the original method presented by Drchal et 

al. (2019) only included the modes car, pt (for public transportation), walk and bike, a variable 

other_mode was created to aggregate the options TI_publico (public individual transportation 

– such as taxis), Outros (translated as other) and Combinado (translated as multiple modes). 

They summed up 1.18% of travel mode choice frequency. Table 3.3 displays the 

correspondence made between the FDUMS and the final organized dataset created as input for 

the model. 
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Table 3.2: Correspondence between activity types on the organized dataset and on the 

FDUMS dataset, and respective frequencies 

 

Activity 

type on the 

organized 

dataset 

Activity type on the FDUMS dataset 

Frequency of 

activity type 

for destinations 

Relative 

frequency (%) 

of activity type 

for destinations 

leisure Lazer (leisure) 2,331 2.1% 

school 

Local de estudo regular 

(main study place) 
13,481 11.9% 

Local de estudo secundário 

(secondary study place) 
810 0.71% 

shop 
Compras (shopping) 3868 3.4% 

Refeição (eating out) 808 0.71% 

sleep Residência (home) 51,785 45.7% 

work 

Local de Trabalho Principal 

(main workplace) 
21,052 18.6% 

Local de Trabalho Secundário 

(secondary workplace) 
573 0.51% 

Negócios/A Serviço (business) 1,177 1.04% 

other 

Levar ou Acompanhar outra Pessoa 

(accompany someone) 
7,538 6.7% 

Assuntos Pessoais (personal business) 6,322 5.6% 

Saúde (health) 2,606 2.3% 

Outros (other) 1,042 0.92% 

 

Table 3.3: Correspondence between mode types on the organized dataset and on the FDUMS 

dataset, and respective frequencies 

 

Mode type 

on the 

organized 

dataset 

Mode type on the FDUMS dataset 
Frequency of 

mode type for  

Relative 

frequency (%) 

of mode type 

bike 
TA_Bicicleta 

(active transportation: cycling) 
1,941 1.71% 

car 
TI_Privado 

(private individual transportation) 
53,777 47.4% 

pt 

TC_Público 

(public collective transportation) 
24,616 21.7% 

TC_Privado (private collective 

transporation – chartered buses) 
3,393 3.0% 

walk 
TA_aPe 

(active transporation: walking) 
28,338 25,0% 

other_mode 

TI_Público (individual public 

transporation – taxis)  
455 0.40% 

Combinado (multiple modes) 598 0.53% 

Outros (other) 280 0.25% 
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Finally, the count set of variables, as described in 3.1.2, was included in the form of six columns, 

each one representing an activity type (sleep, work, school, leisure, shop, and other_mode). For 

each row of the table (leg of a trip), a number representing the count of activity types performed 

up to that point of the trip was included in each of these columns. 

3.3.5 Converting feature types 

As described in section 2.2.1.2, in this study the Scikit-learn Python library is used to implement 

the decision-tree classifier algorithm. However, the current version of this model does not 

support categorical variables (SCIKIT-LEARN USER GUIDE, 2020a). For this reason, the 

encoding on the categorical features of the dataset was required.  

For the binary variables (gender, is_car_avaiable, is_student, has_driver_license) this process 

was simple, as possible values were converted into “0” or “1”. The only categorical feature left 

was activity_origin. 

The Scikit-learn Python library provides two native options for performing encoding on 

categorical features: the ordinal encoder and the one-hot encoder (SCIKIT-LEARN USER 

GUIDE, 2020b). The ordinal encoder, also known as “label encoder”, transforms each possible 

answer into an integer number. For instance, for the activity_origin feature, its possible values 

“leisure”, “school”, “shop”, “sleep”, “work” and “other” could be replaced by the numbers “1”, 

“2”, “3”, “4”, “5” and “6”, respectively. However, this process makes it seem like there is some 

kind of ordering in the possible activity types, which is not true. That is why label encoding is 

only recommended for features which values have an intrinsic order associated (GRADY & 

MEDOFF, 1988).  

So, it was decided to perform one-hot encoding on the activity_origin feature. In one-hot 

encoding, each possible value of the categorical feature is turned into a new column on the 

dataset, or into a new feature. For each instance (row) of the dataset, the column associated with 

the actual value of the feature receives the number 1 and the others receive 0. This process is 

demonstrated in Figure 3.4. 

The detailed procedure for data preparation is presented in the first part of Appendix D.  
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Figure 3.4: Example of the one-hot encoding (OHE) process. 

 

3.3.6 Profiling the organized dataset 

In the organized dataset, after concluding the cleansing process, the proportion of female 

individuals was slightly higher than male (51.5% and 48.5%, respectively). These values are 

consistent with the proportions observed in the Brazilian Census of 2010 for the Federal District 

region, with 52% of the population being female and 48% male (IBGE, [s.d.]). Figure 3.5 

displays the gender profiling of the original and clean datasets. 

 

Figure 3.5: Profile of the “gender” feature on both the original and the clean datasets. 

 

The majority of individuals that composed the organized dataset ranged in age from 30 to 49 

years old (39.7% of the instances), as can be observed in Figure 3.6. In section 3.3.2, it was 

described that individuals younger than 15 years old were removed from the working dataset 

due to their inability for providing meaningful insights regarding decision making processes.  
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Figure 3.6: Profile of the “age” feature on both the original and the clean datasets. 

 

Figure 3.7 indicates that more than 38% of the individuals that composed the organized dataset 

had at least an undergraduate degree. The removal of individuals younger than 15 years old 

from the working dataset contributed to the increase on the average education level in the 

organized set of data. 
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Figure 3.7: Profile of the “education_achieved” feature on both the original and the clean 

datasets. 

 

3.4 MODEL TRAINING AND TESTING 

3.4.1 The original DDAS framework 

The DDAS framework, as presented by Drchal et al. (2019), was replicated through a Python 

script, using the Pandas library for handling data and the Scikit-learn library for implementing 

the machine learning models. Both ATM and MCM modules were trained as decision trees 

classifiers, in accordance with the original DDAS guidelines. A 5-fold cross-validation was 

applied on the training set to select the best configuration for the models. The train dataset for 

both the ATM and the MCM modules had in each row information about a certain trip between 

two locations, where two activity types were performed. 
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Therefore, in each row, soc and reach information of the agent that was performing the trip 

were included, even if this agent performed a number of trips, what caused these personal 

features to be repeated along many rows. The test dataset, on the other hand, included only soc 

and reach features for the agents. The other features were created along with the algorithm, as 

the schedules were developed by the model (e.g.: the activity type counters, mode counters). 

The complete scripts developed for conducting this research were made publicly available in 

the Kaggle online community of data science and machine learning practitioners and they are 

also presented on Appendix D. 

The output of the test algorithm is a table similar to the one used for training the models, with 

one trip represented in each row (pairs of origins-destinations and activity types). By grouping 

the rows of trips performed by the same agent, it is possible to describe the predicted daily 

activity schedule for that agent, and compare it with the actual schedule from the test dataset, 

using the validation frameworks described in section 3.2. 

Regarding the validation framework (VALFRAM), the chi-square values were computed by 

using Yates’s correction for continuity (YATES, 1934). This procedure was not explicitly 

described on the original DDAS paper, but it was necessary for dealing with occasional zero 

occurrences on the contingency tables. Based on the formula for Pearson’s chi-square test, a 

unit value was subtracted from the difference between each observed and expected values, as 

demonstrated in Equation 3.2, where 𝑂𝑖 is an observed frequency, 𝐸𝑖 is an expected frequency 

and 𝑁 is the number of distinct events. 

 𝑋𝑌𝑎𝑡𝑒𝑠
2 = ∑

(|𝑂𝑖−𝐸𝑖|−0.5)2

𝐸𝑖
,𝑁

𝑖=1   Equation 3.2. 

 

It is important to note that on the original DDAS framework, one of the outputs of the MCM 

module was the trip duration, as it was a function of the chosen mode. However, it was also a 

function of the activity locations predicted by the AAM module, which was not implemented 

in the current study. 

Another difference between the original DDAS framework and the model that was implemented 

in this study regards the set of hard-coded rules that existed in the model proposed by Drchal et 

al. (2019). The authors emphasized that the intention was to eliminate as many expert rules as 
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possible, but due to the limited size of their sample (2600 agents from 1000 households) and, 

therefore, their training set, they had to enforce some constraints. An example was the rule that 

for MCM module, only modes available to the person were allowed (e.g.: the car mode was 

only allowed for agents who actually had a car). This type of constraints was not implemented 

in the current study because the valid sample size used was larger (more than 34,000 agents, 

after data cleaning), so it was admitted that the model would be able to learn the rules by itself.  
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4 RESULTS AND ANALYSIS 

In this chapter, three sets of results are presented. First, a replication of the DDAS framework 

is conducted, by following the same procedures proposed by Drchal et al. (2019) and described 

in Chapter 3. This DDAS replication is identified as Model 1. Based on the results obtained 

from Model 1, improvements on the Decision Tree Classifier architectures for the ATM and 

MCM modules are proposed and tested on a second model, which is identified as Model 2. 

Lastly, a third model, identified as Model 3, is tested by changing the core Decision Tree 

Classifier by an ensemble model, the Random Forest classifier. At the end of this chapter, a 

comparison between the three sets of results is presented. As this is the first replication of the 

DDAS method, which is unique compared to other modeling frameworks, emphasis was placed 

on comparing the results obtained in this implementation with the originals obtained by  Drchal 

et al. (2019). Therefore, comparison of results with others in existing literature regarding 

activity-based modeling was not the focus of this chapter. 

4.1 MODEL 1: THE ORIGINAL DDAS FRAMEWORK 

4.1.1 Training results for Model 1 

In the original DDAS framework, the optimal depths for the ATM and MCM decision tree 

models are selected by maximizing the F1-score (specifically the micro-averaged F1-score). In 

the current implementation of DDAS, the same procedure was followed. Figure 4.1 presents 

the results obtained for cross-validation training on ATM module, and Figure 4.2 presents the 

same information for the MCM module. For each depth of the models, a 5-fold cross-validation 

was conducted. The orange line on these figures indicate the mean F1-score obtained on the 

training subset for the cross-validation conducted. The blue line, on its turn, indicates the mean 

F1-score obtained for the cross-validation test subset, while the blue area on the figures 

represent the range of ± 2 standard deviations from the mean F1-score on cross-validation. 

Table 4.1 displays the consolidated results for each module, comparing the optimal values 

found by the current DDAS implementation with the original DDAS results presented by 

Drchal et al. (2019). The 5-fold cross-validation with 50 depths on the ATM module took 4 

minutes and 14 seconds to run on the cloud computational environment Kaggle, and MCM 

module cross-validation took 5 minutes and 3 seconds to run the same cross-validation on the 

same computational environment. 



40 

 

 

Figure 4.1: Selection of ATM tree depth via cross-validation for Model 1, 

F1-score vs. tree depth. 

 

 

Figure 4.2: Selection of MCM tree depth via cross-validation for Model 1, 

F1-score vs. tree depth. 

 

 

Table 4.1: F1-scores for training the ATM and MCM modules of Model 1, compared to the 

results presented by Drchal et al. (2019), which is DDAS original implementation. 

 

Model 

ATM MCM 

Max. mean 

F1-score 

Optimal 

tree depth 

Max. mean 

F1-score 

Optimal 

tree depth 

Drchal et al. (2019) 0.87 6 0.83 8 

Model 1 0.637 6 0.821 10 
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It can be observed from Figures 4.1 and 4.2 that the ATM module F1-scores in cross-validation 

had a higher variance than the scores obtained for the MCM module, and this variance increases 

as the tree depth increases. 

The results in Table 4.1 indicate that optimal tree depths found in the current implementation 

of DDAS and in its original implementation were similar. However, the values for the 

maximum F1-scores were only similar for the MCM module, while in the ATM module the F1-

score obtained for the current implementation was 26% lower than in the original study. It is 

difficult to compare this result with other studies in literature because the prediction approach 

of DDAS is innovative. As described in Chapter Erro! Fonte de referência não encontrada., 

usually, activity-based models are designed to directly predict the full pattern of activity each 

person should perform. For instance, given a list of possible activity patterns, extracted from 

the most common patterns observed on the training set, the model selects the one the activity 

chain that will be performed by each person on their schedules (TACO, 2003; M. YANG et al., 

2014; ZHAO & SHAO, 2010). On the other hand, DDAS proposes sequential prediction of 

each trip, so the models are trained by predicting one trip at a time, having a prediction accuracy 

for individual trips. Therefore, comparison with existing studies is impracticable. 

Using the optimal tree depths that were obtained from cross-validation, confusion matrices for 

both the ATM and the MCM modules were developed by performing an 80-20 training-test 

subset split on the training set. This analysis was not presented on the original DDAS paper, 

but it may provide useful insights on the model performance. Figure 4.3 presents the confusion 

matrix for the ATM module and Table 4.2 displays a report that includes various score metrics 

for each class (possible activity types). 

By observing  Figure 4.3 and Table 4.2, a result that draws attention is that no activity of types 

leisure, shop or sleep were predicted, although in the training subset for cross-validation there 

were 278, 648 and 1407 occurrences of that activity types, respectively. For most of the cases 

in which the true value was leisure or shop, the trained ATM module predicted the class to be 

work, other or none (ending the agent’s schedule). These types are the most common true results 

on the cross-validation set. Virtually for all cases in which the true value was sleep, the class 

was predicted as none (ending the agent’s schedule). These results contributed to the low overall 

F1-score of the model. 
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Figure 4.3: Confusion matrix for a cross-validation set of the ATM module, adopting the 

optimal tree depth that was previously found (depth = 6). 

 

Table 4.2: Score metrics for a cross-validation set of the ATM module, adopting the optimal 

tree depth that was previously found (depth = 6). 

 

Class Precision Recall F1-score 
True 

counts 

leisure 0 0 0 278 

none 0.680 0.981 0.803 5559 

other 0.504 0.266 0.348 2493 

school 0.743 0.701 0.722 1095 

shop 0 0 0 648 

sleep 0 0 0 1407 

work 0.585 0.784 0.670 3305 

full model – micro averaged - - 0.641 - 

full model – macro averaged 0.359 0.390 0.363 - 

full model – weighted averaged 0.527 0.641 0.564 - 

 

Figure 4.4 presents the confusion matrix that was obtained for the MCM module, by following 

the same procedure that was described for the ATM module. Table 4.3 displays the score 

metrics with respect to this confusion matrix. 
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Figure 4.4: Confusion matrix for a cross-validation set of the MCM module, adopting the 

optimal tree depth that was previously found (depth = 10). 

 

Table 4.3: Score metrics for a cross-validation set of the MCM module, adopting the optimal 

tree depth that was previously found (depth = 10). 

 

Class Precision Recall F1-score 
True 

counts 

bike 0.916 0.558 0.694 274 

car 0.847 0.910 0.877 7092 

other_mode 0.848 0.464 0.600 604 

pt 0.823 0.742 0.780 3526 

walk 0.767 0.815 0.790 3289 

full model – micro averaged - - 0.824 - 

full model – macro averaged 0.840 0.698 0.748 - 

full model – weighted averaged 0.825 0.824 0.820 - 

 

By observing Figure 4.4 and Table 4.3, it can be noted that although the general training 

accuracy of the MCM model was adequate and consistent with what it is obtained in other 

studies (OMRANI et al., 2013; XIE et al., 2003), including the DDAS paper, F1-scores for the 

classes that had fewer counts (bike and other_mode) were lower that the F1-scores for the other 

classes. These low F1-scores were influenced by low values of recall for these classes, which 

indicates that the model has a poor ability to find true positive samples for the mode types that 

have fewer true counts. A similar effect was observed for the ATM module results. 
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As it is displayed in the confusion matrix, other_type occurrences are usually mispredicted as 

car or pt mode types, which are the classes that have most counts on the cross-validation subset. 

The bike mode type also has few true counts on the cross-validation subset. However, 

something interesting is observed in the confusion matrix for the bike class: true instances are 

usually confused with the walk mode instead of being confused with more common classes 

such as car or pt. This indicates that there may be nodes on the decision tree that successfully 

discriminates active transportation modes from motorized transportation modes. 

Both ATM and MCM were trained on the full training set using the configuration that was 

obtained from cross-validation. This training took 1.1 second to run on the cloud computational 

environment Kaggle. Test results are presented on the next subsections. 

4.1.2 Test results for Model 1: general 

After the training of the ATM and MCM modules, the models were run as part of the DDAS 

framework implementation that was described in Chapter 3 of this document, using the test 

dataset (6868 agents). This implementation took 3 minutes and 27 seconds to run on the on the 

cloud computational environment Kaggle, considering that the models were already trained. 

4.1.3 Test results for Model 1: ATM module 

4.1.3.1 Expected and observed distribution of trips 

The first analysis that is presented on the results regards the expected (from the test set) and 

observed (model predictions) distribution of trips. This analysis was not presented in the 

original DDAS paper (DRCHAL et al., 2019), but it is being included in the current study due 

to its importance for evaluating model performance. Figure 4.5 displays these results. 

It is possible to note that the model did not predict any activities of the type leisure or sleep and 

had almost no prediction of activities of the type shop. On the other hand, the model predicted 

more activities of types none and work that what was expected. These results were anticipated 

on the analysis conducted during the training phase, in which it was observed that the model 

often misclassified less frequent activities, such as shop and leisure as being more common 

types, such as work. 
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The misclassification of activities with the true label sleep as being none indicate that the model 

is predicting shorter chains than what is expected. This hypothesis is verified on the next 

subsection. 

 
Figure 4.5: Comparison between the expected and observed proportions of activity types on 

the agent’s schedules, for Model 1. 

4.1.3.2 Expected and observed frequency of activity chains 

Although it was not part of the original DDAS validation framework, as presented by 

Drchal et al. (2019), in the current study a comparison between expected and observed 

frequency of activity chains was conducted, in order to evaluate model performance. Results 

are presented in Table 4.4. 

Table 4.4: Expected and observed frequency of activity chains for Model 1. 

 

Type of activity 

chain 

Frequency on the 

test dataset 

(expected values) 

Type of activity chain 

Frequency on the 

results dataset 

(observed values) 

HWH 2467 (36%) HWH 4495 (65%) 

HOH 915 (13%) HOH 1331 (19%) 

HSH 789 (11%) HSH 1040 (15%) 

HBH 347 (5%) HBH 1 (<1%) 

Other patterns 

(449 instances) 
2350 (34%) HOOOOOOOOOOOOH 1 (<1%) 

TOTAL 6868 schedules TOTAL 6868 schedules 
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It is possible to observe from Table 4.4 that, as anticipated on the analysis of the previous 

subsection of this document, predicted chains are indeed shorter than it was expected. It appears 

that the model simplifies the chain performed by a person, predicting practically only 2-trips 

schedules, while the actual values contained 454 possible activity chain patterns. 

Another interesting result that was obtained was the one awfully long and repetitive chain that 

were predicted. Apparently, this chain would be infinite if there was not a hard-coded rule that 

stopped all chains that had more than 14 trips. It is a signal that the count features of the model, 

which represent how many trips of each type the agent has performed up to that point of the 

schedule, may not be taking into consideration by the model. In order to evaluate that, the next 

section presents the analysis of importance of the features for the model. 

4.1.3.3 Analysis of importance of the features 

On the Scikit-learn library for Python, the function permutation_importance is computed as the 

decrease in a model score when a single feature value is randomly shuffled. Table 4.5 presents 

the average values for permutation_importance obtained for 5 repeats of shuffling the ATM 

module training sets in Model 1. 

It is clear from Table 4.5 that features related to activity counts have low impact on model 

performance. This could explain the  prediction of that long and repetitive chain presented in 

the previous subsection. Another interesting result that can be obtained from the analysis of 

Table 4.5 is that the feature that indicates whether the individual is currently on a work activity 

is not relevant at all for predicting him/her next activity. On the other hand, the feature that 

indicates whether the person is at home has the highest importance on the prediction of the next 

activity, by a large difference from the other features. This may indicate that the decision tree 

is working with the following basic premises: every time the person is at home, the model 

predicts the next activity as being any other kind (based on the most common activity types); 

every time the person is on an activity type that is not home, the model finishes the schedule. 
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Table 4.5: Permutation importance for features of the ATM module in Model 1. 

 

Feature Importance 

on Model 1 

is_origin_sleep 0.298876 

is_student 0.070084 

age_group 0.020070 

is_female 0.010928 

reach_bike 0.010492 

education_level 0.005790 

reach_car 0.000942 

has_driver_license 0.000317 

people_in_household 0.000084 

is_origin_other 0.000068 

reach_transit 0.000041 

count_work 0.000022 

is_origin_shop 0.000000 

is_origin_school 0.000000 

is_origin_leisure 0.000000 

count_leisure 0.000000 

count_sleep 0.000000 

count_shop 0.000000 

count_school 0.000000 

count_other 0.000000 

reach_walk 0.000000 

is_car_available 0.000000 

is_origin_work 0.000000 

 

4.1.3.4 Activity counts validation 

The last analysis to be performed on the ATM results regards the VALFRAM validation for 

activity counts. Comparison between expected and observed values for each class (activity 

type), including the chi-square measure, as described in Chapter 3, are presented in Figure 4.6. 

The aim of the Pearson’s chi-square (Χ2) statistical test is to verify goodness of fit, or whether 

an observed frequency distribution is similar to a theoretical distribution. As described in 

Chapter 3, the objective of the current analysis is to determine if the real values (from the 

FDUMS dataset) and the predicted distributions using the ATM module on Model 1 are 

statistically different. 
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Figure 4.6: Activity count validation for Model 1. 

 

Hence, there are two hypotheses: 

• H0: actual and modelled distributions for activity type counts are similar. 

• H1: actual and modelled distributions for activity type counts are different. 
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Based on the Χ2 value, it is possible to calculate what is called p-value, which is the risk of 

incorrectly rejecting the H0 hypothesis. The results obtained for the Model 1, which are 

presented in Figure 4.5 favored the rejection of H0, as the Χ2 values were extremely high, and 

all p-values were equal to zero. 

As discussed on the previous topics, there are a lot of factors that lead to the bad performance 

of the model, many of them related to the unbalance of class distribution on the training set.  

4.1.4 Test results for Model 1: MCM module 

Again, VALFRAM indicates the chi-square (Χ2) statistical test for verifying goodness of fit, or 

if the real values (from the FDUMS dataset) and the predicted distributions using the MCM 

module on Model 1 are statistically different. Chapter 3 describes the adjustment that was made 

on the chi-square computation to adequately compute mode count distributions for each mode. 

Results are presented in Figure 4.7. 

Hypothesis testing is similar to the one performed for ATM validation: 

• H0: actual and modelled distributions for mode counts given an activity are similar. 

• H1: actual and modelled distributions for mode counts given an activity are different. 

 

It is interesting to note that although MCM module performed well on training, with a good 

overall score of prediction, validation results report that the model did not perform well on the 

global DDAS framework. The results obtained for the Model 1, which are presented in Figure 

4.7 favored the rejection of H0, as the Χ2 values were extremely high, and all p-values were 

equal to zero.  

This bad performance of the model on test may be due to the design of the validation 

framework. Since mode counts are computed for groups of given activity types, errors on the 

ATM module may propagate to the MCM module. An example of that is mode count for 

activity types leisure, shop and sleep. The Χ2 values for each activity type are calculated based 

on the proportions expected and observed. However, since no leisure or sleep activities were 

predicted, Χ2 for mode count validations on these classes were equal to zero, given a false idea 

that expected and observed distributions were similar. The same effect was observed for the 

activity of type shop, which was only predicted once. 
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Figure 4.7: Travel mode choice validation for Model 1. 
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Thus, an improvement on the ATM module might improve the results of the MCM module. 

Moreover, improvement could be made also on the travel mode choice validation technique 

that is proposed in the VALFRAM framework for activity-based models. 

4.1.5 Partial conclusions after implementing Model 1 

In this subsection, Model 1 was developed as being a simple reproduction of the ATM and 

MCM modules from the DDAS framework. Results indicated that the ATM module needs 

improvement because its results are not consistent, nor during training or during test. On the 

other hand, by analyzing MCM performance on training, it could be said that the model is 

adequate as it is. Improvement on the ATM module might lead to better validation results on 

the MCM module. 

The categorical features being targeted for prediction on this study (activity type and 

transportation mode) are highly imbalanced, with some classes being way more frequent than 

others. As presented in Chapter Erro! Fonte de referência não encontrada., the micro-

averaged F1-score may not be the ideal score function for evaluating prediction models when 

classes are imbalanced. Therefore, selection of tree depth for the ATM and MCM modules 

should be done with another score function, such as balanced accuracy, for instance. It could 

lead to tree configurations that produce more plausible activity diaries. 

Another possibility for improving accuracy of the model with imbalanced training sets would 

be to use methods such as Synthetic Minority Over-Sampling Technique (SMOTE), to 

synthetically balance the classes. 

4.2 MODEL 2: IMPROVING THE DECISION TREE CLASSIFIER 

4.2.1 Changing the score function for Model 1 

Based on the results obtained on the previous subsection, all procedures that were conducted 

for developing Model 1 were run again, but this time changing the score function that was 

previously the micro-averaged f1-score to the balanced-accuracy, which is more convenient 

for imbalanced datasets. Maximum tree depth for both ATM and MCM were selected based on 

optimal values for the score function. 
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Figure 4.8 presents the results obtained for cross-validation training on ATM module, and 

Figure 4.9 presents the same information for the MCM module. Table 4.6 displays the optimal 

depths found by using the balanced accuracy score function. 

 
Figure 4.8: Selection of ATM tree depth via cross-validation, for Model 1, 

balanced accuracy vs. tree depth. 

 

 
Figure 4.9: Selection of MCM tree depth via cross-validation, for Model 1, 

balanced accuracy vs. tree depth. 
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Table 4.6: Balanced accuracy scores for training the ATM and MCM modules of Model 1. 

 

Model 

ATM MCM 

Max. mean 

balanced 

accuracy 

Optimal 

tree depth 

Max. mean 

balanced 

accuracy 

Optimal 

tree depth 

Model 1 0.394 10 0.684 10 

 

An optimal tree depth of 10 was found for the ATM module by using the balanced accuracy 

score function on cross-validation. It is not far from the optimal depth of 6 found previously by 

using the f1-score. Actually, from Figure 4.8, it can be observed that the average balanced 

accuracy for depth 6 is virtually the same as for depth 10, which means that only changing the 

score function for cross validation did not bring improvements on the model, as the optimal 

depth remained the same. The same occurred for the MCM module. 

4.2.2 Training Model 2 using the SMOTE technique 

Based on the results obtained from Model 1, which indicated that the dataset that is being 

studied has highly imbalanced target features, the SMOTE technique was tested on training the 

ATM and MCM modules in order to try achieving better balanced accuracy scores. This 

approach is identified on this document as Model 2. 

Figure 4.10 presents the results obtained for cross-validation training using SMOTE on ATM 

module, and Figure 4.11 presents the same information for the MCM module. Table 4.7 

displays the optimal depths found by using the balanced accuracy score function. 

It can be concluded from the results on Table 4.7 that the use of the SMOTE technique was 

able to improve the maximum balanced accuracy on training of both the ATM and MCM 

modules.  

Then, both ATM and MCM were trained on the full training set using the configuration that 

was obtained from cross-validation, including the SMOTE technique. This training took 

9.6 seconds to run on the on the cloud computational environment Kaggle. Test results are 

presented on the next subsections. 
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Figure 4.10: Selection of ATM tree depth via cross-validation, for Model 2, using the 

SMOTE technique, balanced-accuracy vs. tree depth. 

 

 
Figure 4.11: Selection of MCM tree depth via cross-validation, for Model 2, using the 

SMOTE technique, balanced-accuracy vs. tree depth. 

 

 

Table 4.7: Balanced accuracy scores for training the ATM and MCM modules of Model 2, 

compared to the results obtained on Model 1. 

 

Model 

ATM MCM 

Max. mean 

balanced 

accuracy 

Optimal 

tree depth 

Max. mean 

balanced 

accuracy 

Optimal 

tree depth 

Model 1 0.394 10 0.684 10 

Model 2 0.693 30 0.871 37 
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4.2.3 Test results for Model 2: general 

After the training of the ATM and MCM modules with the SMOTE technique, the models were 

run as part of the DDAS framework implementation that was described in Chapter 4, using the 

test dataset (6868 agents). This implementation took 6 minutes and 12 seconds to run on the on 

the cloud computational environment Kaggle, considering that the models were already trained. 

4.2.4 Test results for Model 2: ATM module 

4.2.4.1 Expected and observed distribution of trips 

Similarly to what was presented in section 4.1.3.1, the first analysis that is conducted on the 

results regards the expected (from the test set) and observed (model predictions) distribution of 

trips. Figure 4.12 displays the comparison of results obtained for Models 1 and 2. 

 
Figure 4.12: Comparison between the expected and observed proportions (Models 1 and 2) of 

activity types on the agent’s schedules. 

 

It is possible to note that the prediction proportions of activity types for Model 2 are closer to 

expected than the results obtained for Model 1. The SMOTE technique for model training 

allowed the generation of schedules that included even the less frequent classes, such as leisure 

and shop, which did not even appear on the predictions of Model 1. 
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4.2.4.2 Expected and observed frequency of activity chains 

A comparison between expected and observed frequencies of activity chains was conducted, in 

order to evaluate Model 2 performance. Results for the 10 most frequent activity chains for 

each result set are presented in Table 4.8. 

Table 4.8: Expected and observed frequency of activity chains for Model 2. 

Type of 

activity chain 

Frequency on the 

test dataset 

(expected values) 

Type of activity chain 

Frequency on the 

results dataset 

(observed values) 

HWH 2467 (36%) HWH 1739 (25%) 

HOH 915 (13%) HOH 946 (14%) 

HSH 789 (11%) HSH 971 (14%) 

HBH 347 (5%) HLH 537 (8%) 

HOHOH 194 (3%) HBH 501 (7%) 

HWHWH 185 (3% HOHOHOHOHOHOHH 108 (2%) 

HLH 155 (2%) HWHWHWHWHWHWHH 108 (2%) 

HOOH 79 (1%) HOHOHOHOHOHOHO 105 (2%) 

HWHOH 73 (1%) HSHSHSHSHSHSHH 69 (1%) 

HWOH 69 (1%) HOHOH 63 (<1%) 

Other patterns 

(444 instances) 
1595 (23%) 

Other patterns 

(384 instances) 
1721 (25%) 

TOTAL 6868 schedules TOTAL 6868 schedules 

 

At first sight, Model 2 appears to be more credible than Model 1 as it produces a higher variance 

of activity chains (394 different chains predicted, closer to the actual value of 444 different 

chains observed on the test set). Furthermore, observed frequencies for the three most common 

activity chains (home-work-home, home-other-home and home-shop-home) are quite similar to 

the expected frequencies. However, a closer look on the results discloses the considerable 

frequency of long and repetitive chains (at least 7% of the predicted patterns), that only 

appeared once on the results for Model 1. 

In order to further evaluate the occurrence of long chains, a graph displaying expected and 

observed counts for each possible chain length was generated. Chain length is computed as the 

number of trips (origin-destination pairs) that compose a person’s schedule for a day. For 

instance, a chain of kind home-work-home is of size two, because there are two individual trips: 

home-work and work-home. A comparison between frequencies of chain lengths in results for 

both Models 1 and 2 and the expected test values is presented in Figure 4.13. 
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Figure 4.13: Comparison between expected chain lengths and results obtained from Model 2. 

 

Information on Figure 4.13 indicates that there is an unexpected high frequency of long activity 

chains on the results obtained from Model 2. Specifically, a high frequency (13.8%) of chains 

composed by 13 trips, which are the ones that probably would be infinite if there was not a 

hard-coded stop rule for interrupting prediction of long chains. On the other hand, an 

underestimation of chains composed by 4 to 6 trips is observed on the results. 

4.2.4.3 Analysis of importance of the features 

Similarly to what was done on the analysis of results of Model 1, average values for the 

permutation_importance function from Scikit-learn was computed to evaluate importance of 

features in Model 2. Table 4.9 presents these results. 

It is possible to observe that while on Model 1 almost all features had insignificant impact on 

model performance, being is_origin_sleep the only feature with a value of importance higher 

than 0.08, in Model 2 overall feature importance increased. This may be due to the fact that on 

Model 1 tree depth was shorter, then perhaps some of the features probably did not even have 

the chance to be considered in one of the classification nodes (an indicator that favors this 

hypothesis is the number of features with importance equals to zero on Model 1). In Model 2, 

optimal tree depth increased significantly, going from 10 to 30, which means that the number 

of nodes increased 220 times.  
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Table 4.9: Permutation importance for features of the ATM module in Models 1 and 2. 

Null values are highlighted in red color. 

Feature 
Importance on 

Model 1 

Importance on 

Model 2 

age_group 0.020070 0.394552 

reach_bike 0.010492 0.382066 

is_origin_sleep 0.298876 0.360774 

education_level 0.005790 0.318535 

people_in_household 0.000084 0.297516 

reach_walk 0.000000 0.282089 

reach_car 0.000942 0.238699 

reach_transit 0.000041 0.217179 

has_driver_license 0.000317 0.178839 

is_female 0.010928 0.168500 

is_student 0.070084 0.126554 

is_origin_work 0.000000 0.099739 

is_car_available 0.000000 0.099509 

count_work 0.000022 0.086074 

count_other 0.000000 0.075894 

is_origin_other 0.000068 0.071478 

count_school 0.000000 0.045843 

count_sleep 0.000000 0.040117 

is_origin_school 0.000000 0.032853 

is_origin_shop 0.000000 0.018393 

count_shop 0.000000 0.012090 

is_origin_leisure 0.000000 0.007423 

count_leisure 0.000000 0.003654 

 

The information of if the agent is at home or not is still on the top three most important features 

of the classifier, and it is reasonable because all agents start at sleep, so there is a strong 

indication to the model that the following activity, after sleep, should not be sleep again, neither 

none. The only two features more important than is_origin_sleep are age_group and curiously 

reach_bike, which represents the average travel time between the agent’s home and his/her 

main activity place using a bicycle. 

Other features that are considerably important (importance ≅0.3) are education_level, 

people_in_household and reach_walk. Again, count features are not very important to the 

model (all features of that type have importance values < 0.1), which may be the cause for the 

prediction of very long activity chains. Perhaps the adoption of an ensemble mode could help 

solving this problem.  
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4.2.4.4 Activity counts validation 

The last analysis to be performed on the ATM results regards the VALFRAM validation for 

activity counts. Comparison between expected and observed values for each class (activity 

type), including the chi-square measure, as described in Chapter 3, are presented in Figure 4.14. 

Table 4.10 presents a comparison between chi-square measures for both Models 1 and 2, for 

each activity type. 

The aim of the Pearson’s chi-square (Χ2) statistical test is to verify goodness of fit, or whether 

an observed frequency distribution is similar to a theoretical distribution. As described in the 

previous section, the objective of the current analysis is to determine if the real values (from 

the FDUMS dataset) and the predicted distributions using the ATM module on Model 2 are 

statistically different. Hence, there are two hypotheses: 

• H0: actual and modelled distributions for activity type counts are similar. 

• H1: actual and modelled distributions for activity type counts are different. 

 

The results obtained for the Model 2, which are presented in Figure 4.14 favored the rejection 

of H0, as the Χ2 values were extremely high, and all p-values were equal to zero. Furthermore, 

results in Table 4.10 indicate that Model 1 had an overall validation metric better than Model 

2, although Model 2 performed better on training. 

4.2.5 Test results for Model 2: MCM module 

Again, VALFRAM indicates the chi-square (Χ2) statistical test for verifying goodness of fit, or 

if the real values (from the FDUMS dataset) and the predicted distributions using the MCM 

module on Model 2 are statistically different. Chapter 3 describes the adjustment that was made 

on the chi-square computation to adequately compute mode count distributions for each mode. 

Results are presented in Figure 4.15 and Table 4.11 display a comparison between the chi-

square values obtained from Models 1 and 2. 
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Figure 4.14: Activity count validation for Model 2. 

 

Table 4.10: Comparison between chi-square values computed for each class on the activity 

type validation for both Models 1 and 2 (values in bold indicate better measures). 

 

Activity Type X2 Model 1 X2 Model 2 

leisure 376 479 

other 888 3015 

school 91 25 

shop 909 8273 

sleep 1478 2809 

work 1150 23111 
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Figure 4.15: Travel mode choice validation for Model 2. 
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Table 4.11: Comparison between chi-square values computed for each class on the mode type 

validation for both Models 1 and 2 (values in bold indicate better measures). 

 

Activity on 

Destination 
X2 Model 1 X2 Model 2 

leisure miscomputed 171 

none 538 333 

other 575 107 

school 258 121 

shop miscomputed 340 

sleep miscomputed 515 

work 535 251 

 

Hypothesis testing is similar to the one performed for ATM validation: 

• H0: actual and modelled distributions for mode counts given an activity are similar. 

• H1: actual and modelled distributions for mode counts given an activity are different. 

 

Similarly to what happened in Model 1, results for Model 2 favored the rejection of H0 , as the 

Χ2 values were extremely high, and all p-values were equal to zero. However, it is possible to 

observe from Table 4.11 that there was improvement on chi-square values for all classes, 

meaning that Model 2 is closer to the expected scenario than Model 1. Moreover, with the 

improvement of prediction of low frequency activity type classes, such as shop and leisure, 

computation of travel mode choice for these classes was also improved. 

4.2.6 Partial conclusions after implementing Model 2 

In this section, Model 2 was developed with the same structure of Model 1, but with minor 

changes, in an attempt to get better results than the ones obtained previously. The first change 

that was proposed regarded the adoption of balanced_acuracy as score function instead of the 

micro-avareged f1-score, since the first is more adequate for classification problems with 

imbalanced classes. Simply changing the score function during cross-validation did not lead to 

a different model architecture (optimal tree depths obtained were the same as Model 1). 

Then, the second change proposed regarded the use of the SMOTE technique for training the 

decision tree classifier. This method led to an increase in balanced_accuracy and in the optimal 

tree depth for both the ATM and MCM modules. 
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Perhaps due to the increase on the size of the tree, overall feature importance for the ATM 

module increased, although count features continued being not much important. Predicted 

activity chains seemed more realistic in Model 2 than on Model 1, because of its higher 

diversity. However, prediction of long and repetitive chains (a possible consequence of the low 

importance of count features) contributed for a low overall validation score for the ATM 

module. The adoption of ensemble tree models might address this issue. 

The MCM module of Model 2 had a better performance than on Model 1 in both training and 

test scores, which indicates that the SMOTE technique was useful. 

4.3 MODEL 3: USING A RANDOM FOREST CLASSIFIER 

4.3.1 Training results for Model 3 

Based on the results obtained from Models 1 and 2, which indicated that some important 

features were not having significant impact on the performance of the model, the ATM and 

MCM modules were than trained as Random Forest classifiers in order to try achieving better 

balanced accuracy scores. This approach is identified on this document as Model 3. Since the 

SMOTE technique provided improvement on Model 2 in comparison to Model 1, it was again 

adopted on the training phase of Model 3. 

Cross-validation for the Random Forest models was conducted differently from what was done 

in the Decision Tree models. Instead of running a 5-fold cross-validation for each possible tree 

depth, in order to find the optimal tree depth, only one model for each possible max_depth 

attribute was run, since for each run of the ensemble model, 100 different trees are created and 

compared among each other. 

Figure 4.16 presents the results obtained for cross-validation training of the Random Forest 

classifier ATM module, and Figure 4.17 presents the same information for the MCM module. 

Table 4.12 displays the optimal depths found by using the balanced accuracy score function. 
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Figure 4.16: Selection of ATM tree depth for the Random Forest Classifier via cross-

validation for Model 3, balanced accuracy vs. tree depth. 

 

 
Figure 4.17: Selection of MCM tree depth for the Random Forest Classifier via cross-

validation for Model 3, balanced accuracy vs. tree depth. 

 

 

Table 4.12: Balanced accuracy scores for training the ATM and MCM modules of Model 3, 

compared to the results obtained on Models 1 and 2. 

 

Model 

ATM MCM 

Max. mean 

balanced 

accuracy 

Optimal 

tree depth 

Max. mean 

balanced 

accuracy 

Optimal 

tree depth 

Model 1 0.394 10 0.684 10 

Model 2 0.693 30 0.871 37 

Model 3 0.719 25 0.882 35 



65 

 

It can be concluded from the results on Table 4.12 that the adoption of Random Forest 

Classifiers instead of Decision Tree Classifiers was able to improve the maximum balanced 

accuracy on training of both the ATM and MCM modules. Moreover, optimal tree depths 

obtained for Model 3 were slightly shallower than the ones found for Model 2, which is good 

for avoiding overfitting. 

In sequence, both ATM and MCM were trained as Random Forest Classifiers on the full 

training set using the configuration that was obtained from cross-validation, including the 

SMOTE technique. This training took 78 seconds to run on the on the cloud computational 

environment Kaggle. Test results are presented on the next subsections. 

4.3.2 Test results for Model 3: general 

After the training of the ATM and MCM modules as described in the previous subsection, the 

models were run as part of the DDAS framework implementation that was described in 

Chapter 3, using the test dataset (6868 agents). This implementation took 11 minutes and 7 

seconds to run on the on the cloud computational environment Kaggle, considering that the 

models were already trained. 

4.3.3 Test results for Model 3: ATM module 

4.3.3.1 Expected and observed distribution of trips 

Similarly to what was presented for the previous models, the first analysis that is conducted on 

the results regards the expected (from the test set) and observed (model predictions) distribution 

of trips. Figure 4.18 displays the comparison of results obtained for Models 1, 2 and 3. It is 

possible to note that the prediction proportions of activity types for Model 3 are the closest to 

the expected values that were obtained for all models evaluated in the current study. 

4.3.3.2 Expected and observed frequency of activity chains 

A comparison between expected and observed frequencies of activity chains was conducted, in 

order to evaluate Model 3 performance. Results for the 10 most frequent activity chains for 

each result set are presented in Table 4.13. 
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Figure 4.18: Comparison between the expected and observed proportions (Models 1, 2 and 3) 

of activity types on the agent’s schedules. 

 

Table 4.13: Expected and observed frequency of activity chains for Model 3. 

Type of 

activity chain 

Frequency on the 

test dataset 

(expected values) 

Type of activity chain 

Frequency on the 

results dataset 

(observed values) 

HWH 2467 (36%) HWH 2531 (37%) 

HOH 915 (13%) HSH 1046 (15%) 

HSH 789 (11%) HOH 943 (14%) 

HBH 347 (5%) HBH 738 (11%) 

HOHOH 194 (3%) HLH 456 (7%) 

HWHWH 185 (3% HOHWH 114 (2%) 

HLH 155 (2%) HWHWH 106 (2%) 

HOOH 79 (1%) HOHOH 101 (2%) 

HWHOH 73 (1%) HOHOHOHOHOHOHH 83 (1%) 

HWOH 69 (1%) HOHOHOH 56 (<1%) 

Other patterns 

(444 instances) 
1595 (23%) 

Other patterns 

(123 instances) 
694 (10%) 

TOTAL 6868 schedules TOTAL 6868 schedules 

 

By observing the results presented in Table 4.13, it is possible to conclude that Model 3 appears 

to be the most credible model developed in the current study with respect to the predicted 

activity chains. Not only the actual most frequent activity chains are well represented in the 

results of Model 3, but also there is a wide variety of schedules being predicted by the model. 

Similarly to what was observed on the results of Model 2, some long and repetitive chains 

appeared on the result list of predicted schedules for Model 3. However, Figure 4.19 indicates 

that 13-trip chains are less frequent in the latter model (211 occurrences) than on the previous 

one (945 occurrences). 
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Figure 4.19: Comparison between expected chain lengths and results obtained from Model 3. 

4.3.3.3 Analysis of importance of the features 

Similarly to what was done on the analysis of results of Models 1 and 2, average values for the 

permutation_importance function from Scikit-learn was computed to evaluate importance of 

features in Model 3. Table 4.14 presents these results. 

The information of whether the agent is at home or not is again on the top three most important 

features of the classifier, and it is reasonable because all agents start at sleep, so there is a strong 

indication to the model that the following activity, after sleep, should not be sleep again, neither 

none. The features age_group, which was the most important feature of Model 2, and 

people_in_household, which was also a feature of great importance on Model 2, complete the 

Top 3 ranking of feature importance for Model 3. 

Again, count features are not particularly important to the model (all features of that type have 

importance values < 0.1), which may still be the cause for the prediction of some awfully long 

activity chains. The adoption of an ensemble mode did not help solving this problem, that was 

already evident in Model 2.  
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Table 4.14: Permutation importance for features of the ATM module in Models 1, 2 and 3. 

Null values are highlighted in red color. 

 

Feature 
Importance on 

Model 1 

Importance on 

Model 2 

Importance on 

Model 3 

is_origin_sleep 0.298876 0.360774 0.285347 

age_group 0.020070 0.394552 0.263374 

people_in_household 0.000084 0.297516 0.214096 

education_level 0.005790 0.318535 0.193852 

reach_bike 0.010492 0.382066 0.148993 

is_female 0.010928 0.168500 0.132949 

is_student 0.070084 0.126554 0.122529 

has_driver_license 0.000317 0.178839 0.115733 

reach_car 0.000942 0.238699 0.112085 

reach_walk 0.000000 0.282089 0.102298 

reach_transit 0.000041 0.217179 0.099807 

is_origin_work 0.000000 0.099739 0.089153 

is_car_available 0.000000 0.099509 0.076224 

count_work 0.000022 0.086074 0.070164 

is_origin_other 0.000068 0.071478 0.066914 

count_other 0.000000 0.075894 0.050011 

count_school 0.000000 0.045843 0.036623 

is_origin_school 0.000000 0.032853 0.030420 

count_sleep 0.000000 0.040117 0.026285 

is_origin_shop 0.000000 0.018393 0.017241 

count_shop 0.000000 0.012090 0.008411 

is_origin_leisure 0.000000 0.007423 0.006955 

count_leisure 0.000000 0.003654 0.002550 

 

4.3.3.4 Activity counts validation 

The last analysis to be performed on the ATM results regards the VALFRAM validation for 

activity counts. Comparison between expected and observed values for each class (activity 

type), including the chi-square measure, as described in Chapter 3, are presented in Figure 4.20. 

Table 4.15 presents a comparison between chi-square measures for Models 1, 2, and 3, for each 

activity type. 

The aim of the Pearson’s chi-square (Χ2) statistical test is to verify goodness of fit, or if an 

observed frequency distribution is similar to a theoretical distribution. As described in Chapter 

3,  the objective of the current analysis is to determine if the real values (from the FDUMS 

dataset) and the predicted distributions using the ATM module on Model 3 are statistically 

different.  
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Figure 4.20: Activity count validation for Model 3. 

 

 

Table 4.15: Comparison between chi-square values computed for each class on the activity 

type validation for Models 1, 2 and 3 (values in bold indicate better measures). 

Activity Type X2 Model 1 X2 Model 2 X2 Model 3 

leisure 376 479 134 

other 888 3015 1303 

school 91 25 8 

shop 909 8273 447 

sleep 1478 2809 454 

work 1150 23111 1101 
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Hence, there are two hypotheses: 

• H0: actual and modelled distributions for activity type counts are similar. 

• H1: actual and modelled distributions for activity type counts are different. 

 

The results obtained for the Model 3, which are presented in Figure 4.20 favored the rejection 

of H0, as almost all Χ2 values were extremely high, and correspondent  p-values were equal to 

zero. The exception was for the school activity type, which had a Χ2 = 8.99 with a 

correspondent p-value of 6% for 4 classes. 

Furthermore, results in Table 4.15 indicate that Model 3 had an overall validation metric better 

than Models 1 and 2 on the test set, in addition to being more accurate on the training set as 

well. 

4.3.4 Test results for Model 3: MCM module 

Again, VALFRAM indicates the chi-square (Χ2) statistical test for verifying goodness of fit, or 

if the real values (from the FDUMS dataset) and the predicted distributions using the MCM 

module on Model 3 are statistically different. Chapter 4 describes the adjustment that was made 

on the chi-square computation to adequately compute mode count distributions for each mode. 

Results are presented in Figure 4.21 and Table 4.16 displays a comparison between the chi-

square values obtained from Models 1, 2 and 3. 

Hypothesis testing is similar to the one performed for ATM validation: 

• H0: actual and modelled distributions for mode counts given an activity are similar. 

• H1: actual and modelled distributions for mode counts given an activity are different. 

 

Similarly to what happened in Models 1 and 2, results for Model 3 favored the rejection of H0, 

as the Χ2 values were extremely high, and all p-values were equal to zero. However, it is 

possible to observe from Table 4.16 that there was improvement on chi-square values for all 

classes, meaning that Model 3 is closer to the expected scenario than Models 1 and 2.  
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Figure 4.21: Travel mode choice validation for Model 3. 
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Table 4.16: Comparison between chi-square values computed for each class on the travel 

mode choice validation for Models 1, 2 and 3 (values in bold indicate better measures). 

Activity on 

Destination 
X2 Model 1 X2 Model 2 X2 Model 3 

leisure miscomputed 171 98 

none 538 333 178 

other 575 107 75 

school 258 121 70 

shop miscomputed 340 140 

sleep miscomputed 515 184 

work 535 251 113 

 

4.3.5 Partial conclusions after implementing Model 3 

In this section, Model 3 was developed with the same structure of Model 2 but using a Random 

Forest Classifier as predictor for both the ATM and MCM modules, instead of the Decision 

Tree Classifier that was used in Models 1 and 2. It was clear that Model 3 produced better 

results on the training and test phases, for both the ATM and MCM modules, being its results 

closer to what was expected than what was obtained in the previous models. This result 

indicates that the adoption of the SMOTE technique on training and the Random Forest 

Classifier as predictor are good improvements to be incorporated on the DDAS framework 

4.4 SUMMARY OF RESULTS 

Table 4.17 presents a summary of the results that have been presented in this chapter. 

Table 4.17: Summary of the results of the current study. 

Attribute 
Original 

DDAS 
Model 1 Model 2 Model 3 

Training results     

ATM max. balanced accuracy not informed 0.394 0.693 0.719 

ATM optimal tree depth 6 10 30 25 

MCM max. balanced accuracy not informed 0.684 0.871 0.882 

MCM optimal tree depth 8 10 37 35 

Time for training the modules* not informed 1.1” 9.6” 78.2” 

General test results     

Time for running the framework* not informed 3’27” 6’12” 11’7” 

Total X2 for both ATM and MCM not informed 6758 39556 4305 
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Table 4.17 (Cont): Summary of the results of the current study. 

 

Attribute 
Original 

DDAS 
Model 1 Model 2 Model 3 

ATM validation results     

X2 for activity leisure 538 376 479 134 

X2 for activity other N/A 888 3015 1303 

X2 for activity school not informed 91 25 8 

X2 for activity shop 7374 909 8273 447 

X2 for activity sleep not informed 1478 2809 454 

X2 for activity work not informed 1150 23111 1101 

Total X2 for all activities not informed 4893 37716 3447 

MCM validation results     

X2 for destination leisure 22740 
mis-

computed 
171 98 

X2 for destination none not informed 538 333 178 

X2 for destination other N/A 575 107 75 

X2 for destination school 30440 258 121 70 

X2 for destination shop 23940 
mis-

computed 
340 140 

X2 for destination sleep 145200 
mis-

computed 
515 184 

X2 for destination work 19240 535 251 113 

Total X2 for all destinations not informed 1865 1840 858 
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5 CONCLUSIONS AND RECOMMENDATIONS 

  

5.1 CONCLUSIONS 

The aim of this research was to develop a commented replication of two modules of the Data-

Driven Activity Scheduler (DDAS) framework proposed by Drchal et al. (2019) for an activity-

based transportation model: the Activity Type Model (ATM) and the Mode Choice Model 

(MCM). In order to achieve this aim, three objectives have been defined. The first one regarded 

the replication of the ATM and MCM modules using travel data available for the Metropolitan 

Region of Brasilia in the Federal District Urban Mobility Survey (FDUMS). The procedures 

and results related to this replication were identified in the current document as Model 1.  

After cleansing, the FDUMS tables provided information about 92,696 trips performed by 

34,340 agents within a working day, which represents an input set more than 13 times larger 

than the one that was used by Drchal et al. (2019). The authors of DDAS have indicated that 

one of the limitations of their study was the small size of the dataset available for their proof-

of-concept, and they expected to achieve better results with larger training sets of data. Indeed, 

the current replication of the DDAS modules produced better validation metrics for both ATM 

and MCM, as can be observed in Table 4.17, considering the VALFRAM validation 

framework. Moreover, Model 1 produced better results for travel mode choice prediction, 

compared to the ones reported by Drchal et al. (2019) even without the hard coded rules that 

were implemented in the original DDAS, such as only allowing the prediction of mode car for 

these agents who had it available in their homes. It could be concluded that the model was able 

to learn these patterns by itself. 

The second objective of this study concerned the investigation of possible improvements to be 

made on the DDAS framework, especially on the ATM and MCM modules, which were being 

implemented. This task was performed in the course of the development of Model 1. 

During the phase of training the models, the first result that draw attention was the F1-score 

obtained for the ATM module, which was 26% lower than the one presented in the DDAS 

paper. Since the current implementation had an input dataset more than 13 times larger, it was 

expected that the training accuracy of the models improved. It was concluded, then, that perhaps 
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the F1-score was not the best choice for accuracy measurement for ATM and MCM, which had 

input datasets with imbalanced class proportions on prediction, and other measurements such 

as the balanced accuracy score (also called macro-averaged recall) could be a better indicator 

in this scenario. Another minor issue that was noted during Model 1 implementation was the 

lack of detail presented by Drchal et al. (2019) regarding training of the DDAS modules. 

Resources such as confusion matrices and reports of accuracy measures would be useful for 

analyzing the framework, but they were not reported in the DDAS paper. The current research 

filled this gap by providing this information for Model 1.  

In the validation phase of Model 1, other potential improvements to DDAS were identified, 

especially regarding the VALFRAM framework. The activity count validation metric, which is 

based on the comparison of expected and observed counts of schedules having 1, 2, 3… 

occurrences of a certain activity type, was proven to be weak in terms of indicating how close 

to reality are the predicted results. In Model 1, for instance, no activities of types leisure or 

sleep were predicted, and due to the manner how VALFRAM is designed, these classes had no 

contribution in decreasing the evaluation score for the model (chi-square values for these 

classes were equal to zero). It was concluded that travel mode choice validation also had 

indications that it was faulty as it depended on the results of activity type prediction. 

Moreover, both methodologies that are part of VALFRAM for validating the ATM and MCM 

modules rely on aggregate metrics, which is incompatible to the whole principle of disaggregate 

activity-based models. Perhaps individual measurements for each agent would be more useful 

for transportation planning. For instance, given an agent with a real chain home-work-leisure-

home, performing all trips by car, significant validation measurements would include if the 

model is able to predict that this specific agent performs at least one activity of type work or at 

least one activity of type leisure. It would be also important to check if the model can predict 

that this agent performs three trips during a day, and that all trips have the transportation mode 

car. None of this information is being checked by the VALFRAM framework. 

The third objective was the implementation and evaluation of the potential improvements that 

had been identified while replicating the DDAS framework. Therefore, two different 

implementations were tested: the first one (Model 2) included the balanced accuracy score for 

cross-validation metric and the Synthetic Minority Over-Sampling Technique (SMOTE), to 

synthetically balance the activity type classes; the second implementation (Model 3) was similar 
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to Model 2, but used a Random Forest classifier instead of the Decision Tree classifier that 

composed Models 1, 2 and the original DDAS. 

It was concluded that both Models 2 and 3 produced better validation results (VALFRAM 

scores) for the MCM module, and better training scores for both ATM and MCM. Nevertheless, 

Model 3 stood out by producing better VALFRAM scores for the ATM module as well, in 

addition to generating more reasonable activity chains, with little increase in computation time. 

It can be said that Model 3, designed and trained as it is, may be a useful tool for transportation 

planning within the Metropolitan Area of Brasilia. The only input data needed for predicting 

activity schedules with activity chains and travel mode choice are the socio-demographic 

characteristics of the agents, information that is collected biannually by the Federal District 

Planning Company (Companhia de Planejamento do Distrito Federal – CODEPLAN).  

In conclusion, there is still improvement to be made to Model 3, especially regarding the small 

portion of prediction of long and repetitive chains by the ATM module. However, the full public 

availability of all Python code developed in the course of the current research, which was the 

fourth and final objective of this study, must encourage further investigation and faster 

advancements on the transport modeling field. 

5.2 LIMITATIONS OF THE STUDY 

One of the limitations of the current study regarded the difficulty in classifying activity and 

mode types in order to make them compatible to the classes specified in the DDAS paper. It 

was not possible to assure that the same methodology for classifying activity types was used in 

the FDUMS datasets and in the input data used that was used by Drchal et al. (2019), as none 

of the publications have detailed their classification procedures. It is clear that some overlap 

may occur between leisure and shop activity types, and an example is the activity eating out 

that was part of the FDUMS dataset. Moreover, activity and mode types on the FDUMS dataset 

were much more complex than what was presented in the DDAS paper. The FDUMS dataset 

included for instance an activity type taking someone somewhere, and mode types motorcycle 

as driver, motorcycle as passenger, private charter, none of them having correspondence on 

the DDAS framework classes. 
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Another limitation of the study was the absence of a feature indicating if each person had or not 

a public transportation card in the FDUMS dataset. This was the only feature required by the 

original DDAS implementation that was not available on the input of the current research.  

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

Based on the findings of the current study, the following opportunities for technical and 

academic advances are recommended for future research: 

• Creating a critical analysis regarding the other two modules of DDAS (Activity 

Duration Model and Activity Attractor Model). 

• Assessing the incorporation more features on training the ATM and MCM modules, 

such as the location (administrative region) where each person lives, not only to try to 

achieve better performance, but also to provide more useful insights for transportation 

planning. 

• Evaluating the adoption of different machine learning algorithms on the DDAS 

modules, such as a long term short-memory (LTSM) predictor for the ATM module, as 

that could incorporate the effects of activity chaining, and neural networks for the MCM 

module, as it is proved to be a good classifier for travel mode choice models. 

• Developing a new validation framework for activity-based models that considers the 

results obtained from each individual agent, differently to VALFRAM, that computes 

aggregate measurements. 

• Incorporating the proposed model into a tool for urban and mobility planning for the 

region of the Federal District. 
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Wermersch, F.G 

Uso de redes neurais artificiais para descoberta 

de conhecimento sobre a escolha do modo de 

viagem 

Using artificial neural network for the 

discovery of mode travel choice knowledge 
2002 

Universidade de 

São Paulo 
Kawamoto, E. 

Ichikawa, S. M.  

Aplicação de Minerador de Dados na Obtenção 

de Relações entre Padrões de Encadeamento de 

Viagens codificados e Características 

Socioeconômicas. 

Applicability of a data miner for obtaining 

relationships between trip-chaining patterns 

and urban trip-makers socioeconomic 

characteristics 

2002 
Universidade de 

São Paulo 
Kawamoto, E. 

Taco, P. W. G. 

Redes neurais artificiais aplicadas na 

modelagem individual de padrões de viagens 

encadeadas a pé 

Artificial neural networks applied in individual 

modeling of trip-chaining patterns by walk 
2003 

Universidade de 

São Paulo 
Kawamoto, E. 

Uriarte, A. M. L. 
Análise do Padrão Comportamental de 

Pedestres 
Analysis of the behavior pattern of pedestrians. 2003 

Universidade 

Federal do Rio 

Grande do Sul 

Cybis, H. B. 

Pitombo, C. S. 

Análise do comportamento subjacente ao 

encadeamento de viagens através do uso de 

minerador de dados. 

Analysis of behavior underlying chained trips 

by using data miner 
2003 

Universidade de 

São Paulo 
Kawamoto, E. 

Sousa, P. B. 
Análise comparativa do encadeamento de 

viagens de três áreas urbanas. 

Comparative analysis of the chained trips of 

three urban areas 
2004 

Universidade de 

São Paulo 
Kawamoto, E. 

Arruda, F. S. 

Aplicação de um modelo baseado em 

atividades para análise da relação uso do solo e 

transportes no contexto brasileiro 

Analysis of the land use-transportation 

relationship with an activity-based model in the 

context of Brazil 

2005 
Universidade de 

São Paulo 
Silva, A. N. R. 

Silva, M. A. e 

Verificação da aplicabilidade da técnica de 

mineração de dados na Região Metropolitana 

de São Paulo 

An evaluation process of the data mining 

technique for forecasting urban passengers 

transportation demand using São Paulo 

metropolitan area data 

2006 
Universidade de 

São Paulo 
Kawamoto, E. 

Pitombo, C. S. 

Estudos de relações entre variáveis 

socioeconômicas, de uso do solo, participação 

em atividades e padrões de viagens encadeadas 

urbanas.  

Study of relationships between socioeconomic, 

land use, activity participation variables and 

trip-chaining urban patterns 

2007 
Universidade de 

São Paulo 
Kawamoto, E. 
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Dalmaso, R. C. 

Identificação e caracterização de grupos de 

indivíduos segundo padrões de sequências de 

atividades multidimensionais 

Identification and characterization of groups of 

individuals according to patterns of 

multidimensional activity sequences. 

2009 
Universidade de 

São Paulo 
Strambi, O. 

Alves, V. F. B. 

Explorando técnicas para a localização e 

identificação de potenciais usuários de 

transporte público urbano 

Exploring techniques for the location and 

identification of potential users of urban public 

transportation 

2011 
Universidade de 

São Paulo 
Silva, A. N. R. 

Medrano, R. M. 

A. 

Modelagem de padrões de viagens e expansão 

urbana 
Travel patterns and urban sprawl modeling 2012 

Universidade de 

Brasília 
Taco, P. W. G. 

Costa, A. S. G. 
Proposta de um Método para Estimação de 

Escolha Modal Através da Geoestatística 

Proposition of a method for estimating mode 

choice by using geostatistics 
2013 

Universidade 

Federal da Bahia 
Pitombo, C. S. 

Pianucci, M. N. 

Uma proposta para a obtenção da população 

sintética através de dados agregados para 

modelagem de geração de viagens por 

domicílio 

Uma proposta para a obtenção da população 

sintética através de dados agregados para 

modelagem de geração de viagens por 

domicílio 

2016 
Universidade de 

São Paulo 
Segatini, P. C. 
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APPENDIX C: PROCEDURE FOR CREATING DISTANCE MATRICES 

All code and complementary information (input files) are available on 

https://github.com/danielefm/DistanceMatrix, with a copy available on: 

https://doi.org/10.5281/zenodo.3965086. 
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APPENDIX D: CODE FOR IMPLEMENTING THE METHOD DESCRIBED IN THIS 

DOCUMENT 

All code for implementing the method described in this document is publicly available in the 

Kaggle online community of data science and machine learning practitioners on 

https://www.kaggle.com/danielefm/ddas-implementation. with a copy available on: 

https://doi.org/10.5281/zenodo.4170989. 
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